WNK kinase is a vasoactive chloride sensor in endothelial cells
Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (15), p.e2322135121 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | e2322135121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Garrud, Tessa A C Bell, Briar Mata-Daboin, Alejandro Peixoto-Neves, Dieniffer Collier, Daniel M Cordero-Morales, Julio F Jaggar, Jonathan H |
description | Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl
) is the most abundant anion in ECs and the Cl
sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl
signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl
signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl
concentration ([Cl
]
) due to the activation of TMEM16A, a Cl
channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl
signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca
signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca
signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl
]
, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl
signaling and WNK kinase activity in ECs to control arterial contractility. |
doi_str_mv | 10.1073/pnas.2322135121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11009681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039451211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</originalsourceid><addsrcrecordid>eNpdkTtPwzAURi0EoqUwsyFLLCwpvrGT2FOFKl4CwQJitFznlrqkcbHTSvx7ErU8Jw8-Pr7f_Qg5BjYEVvDzZW3iMOVpCjyDFHZIH5iCJBeK7ZI-Y2mRSJGKHjmIcc4YU5lk-6THZZZLlYs-Gb083NE312qQukgNXZvojW3cGqmdVT64EmnEOvpAXU2xLn0zw8qZilqsqnhI9qamini0PQfk-eryaXyT3D9e344v7hPLJTTJhCvLAMqyAMCJyUswhUyRi8KCkiCxyDk3th0JwKLhgglhstSwIocsV5wPyGjjXa4mCywt1k0wlV4GtzDhQ3vj9N-b2s30q19rgDZ1LqE1nG0Nwb-vMDZ64WKXwdToV1FzxnmLKug-O_2Hzv0q1G2-jlKiW3UnPN9QNvgYA06_pwGmu3Z0147-aad9cfI7xDf_VQf_BDW1icQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039451211</pqid></control><display><type>article</type><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</creator><creatorcontrib>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</creatorcontrib><description>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl
) is the most abundant anion in ECs and the Cl
sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl
signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl
signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl
concentration ([Cl
]
) due to the activation of TMEM16A, a Cl
channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl
signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca
signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca
signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl
]
, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl
signaling and WNK kinase activity in ECs to control arterial contractility.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2322135121</identifier><identifier>PMID: 38568964</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arteries ; Biological Sciences ; Blood flow ; Blood pressure ; Blood vessels ; C-Terminus ; Calcium (intracellular) ; Calcium channels ; Calcium ions ; Calcium signalling ; Channels ; Chlorides ; Chlorides - metabolism ; Contractility ; Endothelial cells ; Endothelial Cells - metabolism ; Intracellular ; Intracellular signalling ; Kinases ; Lysine ; Mice ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Signal Transduction - physiology ; Substrates ; Transient receptor potential proteins ; TRPV Cation Channels - metabolism ; Vasoactive agents ; Vasodilation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (15), p.e2322135121</ispartof><rights>Copyright National Academy of Sciences Apr 9, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</citedby><cites>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</cites><orcidid>0000-0002-1190-5433 ; 0000-0003-1831-7842 ; 0000-0001-9797-6402 ; 0000-0002-7900-7939 ; 0000-0001-9431-9271 ; 0000-0003-1505-3335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009681/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009681/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38568964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garrud, Tessa A C</creatorcontrib><creatorcontrib>Bell, Briar</creatorcontrib><creatorcontrib>Mata-Daboin, Alejandro</creatorcontrib><creatorcontrib>Peixoto-Neves, Dieniffer</creatorcontrib><creatorcontrib>Collier, Daniel M</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F</creatorcontrib><creatorcontrib>Jaggar, Jonathan H</creatorcontrib><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl
) is the most abundant anion in ECs and the Cl
sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl
signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl
signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl
concentration ([Cl
]
) due to the activation of TMEM16A, a Cl
channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl
signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca
signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca
signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl
]
, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl
signaling and WNK kinase activity in ECs to control arterial contractility.</description><subject>Animals</subject><subject>Arteries</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>C-Terminus</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Channels</subject><subject>Chlorides</subject><subject>Chlorides - metabolism</subject><subject>Contractility</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Lysine</subject><subject>Mice</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Substrates</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Vasoactive agents</subject><subject>Vasodilation</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtPwzAURi0EoqUwsyFLLCwpvrGT2FOFKl4CwQJitFznlrqkcbHTSvx7ErU8Jw8-Pr7f_Qg5BjYEVvDzZW3iMOVpCjyDFHZIH5iCJBeK7ZI-Y2mRSJGKHjmIcc4YU5lk-6THZZZLlYs-Gb083NE312qQukgNXZvojW3cGqmdVT64EmnEOvpAXU2xLn0zw8qZilqsqnhI9qamini0PQfk-eryaXyT3D9e344v7hPLJTTJhCvLAMqyAMCJyUswhUyRi8KCkiCxyDk3th0JwKLhgglhstSwIocsV5wPyGjjXa4mCywt1k0wlV4GtzDhQ3vj9N-b2s30q19rgDZ1LqE1nG0Nwb-vMDZ64WKXwdToV1FzxnmLKug-O_2Hzv0q1G2-jlKiW3UnPN9QNvgYA06_pwGmu3Z0147-aad9cfI7xDf_VQf_BDW1icQ</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Garrud, Tessa A C</creator><creator>Bell, Briar</creator><creator>Mata-Daboin, Alejandro</creator><creator>Peixoto-Neves, Dieniffer</creator><creator>Collier, Daniel M</creator><creator>Cordero-Morales, Julio F</creator><creator>Jaggar, Jonathan H</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1190-5433</orcidid><orcidid>https://orcid.org/0000-0003-1831-7842</orcidid><orcidid>https://orcid.org/0000-0001-9797-6402</orcidid><orcidid>https://orcid.org/0000-0002-7900-7939</orcidid><orcidid>https://orcid.org/0000-0001-9431-9271</orcidid><orcidid>https://orcid.org/0000-0003-1505-3335</orcidid></search><sort><creationdate>20240409</creationdate><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><author>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Arteries</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>C-Terminus</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Channels</topic><topic>Chlorides</topic><topic>Chlorides - metabolism</topic><topic>Contractility</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Lysine</topic><topic>Mice</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Substrates</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Vasoactive agents</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrud, Tessa A C</creatorcontrib><creatorcontrib>Bell, Briar</creatorcontrib><creatorcontrib>Mata-Daboin, Alejandro</creatorcontrib><creatorcontrib>Peixoto-Neves, Dieniffer</creatorcontrib><creatorcontrib>Collier, Daniel M</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F</creatorcontrib><creatorcontrib>Jaggar, Jonathan H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrud, Tessa A C</au><au>Bell, Briar</au><au>Mata-Daboin, Alejandro</au><au>Peixoto-Neves, Dieniffer</au><au>Collier, Daniel M</au><au>Cordero-Morales, Julio F</au><au>Jaggar, Jonathan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WNK kinase is a vasoactive chloride sensor in endothelial cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-09</date><risdate>2024</risdate><volume>121</volume><issue>15</issue><spage>e2322135121</spage><pages>e2322135121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl
) is the most abundant anion in ECs and the Cl
sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl
signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl
signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl
concentration ([Cl
]
) due to the activation of TMEM16A, a Cl
channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl
signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca
signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca
signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl
]
, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl
signaling and WNK kinase activity in ECs to control arterial contractility.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38568964</pmid><doi>10.1073/pnas.2322135121</doi><orcidid>https://orcid.org/0000-0002-1190-5433</orcidid><orcidid>https://orcid.org/0000-0003-1831-7842</orcidid><orcidid>https://orcid.org/0000-0001-9797-6402</orcidid><orcidid>https://orcid.org/0000-0002-7900-7939</orcidid><orcidid>https://orcid.org/0000-0001-9431-9271</orcidid><orcidid>https://orcid.org/0000-0003-1505-3335</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (15), p.e2322135121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11009681 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Arteries Biological Sciences Blood flow Blood pressure Blood vessels C-Terminus Calcium (intracellular) Calcium channels Calcium ions Calcium signalling Channels Chlorides Chlorides - metabolism Contractility Endothelial cells Endothelial Cells - metabolism Intracellular Intracellular signalling Kinases Lysine Mice Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Signal Transduction - physiology Substrates Transient receptor potential proteins TRPV Cation Channels - metabolism Vasoactive agents Vasodilation |
title | WNK kinase is a vasoactive chloride sensor in endothelial cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WNK%20kinase%20is%20a%20vasoactive%20chloride%20sensor%20in%20endothelial%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garrud,%20Tessa%20A%20C&rft.date=2024-04-09&rft.volume=121&rft.issue=15&rft.spage=e2322135121&rft.pages=e2322135121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2322135121&rft_dat=%3Cproquest_pubme%3E3039451211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039451211&rft_id=info:pmid/38568964&rfr_iscdi=true |