WNK kinase is a vasoactive chloride sensor in endothelial cells

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (15), p.e2322135121
Hauptverfasser: Garrud, Tessa A C, Bell, Briar, Mata-Daboin, Alejandro, Peixoto-Neves, Dieniffer, Collier, Daniel M, Cordero-Morales, Julio F, Jaggar, Jonathan H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page e2322135121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Garrud, Tessa A C
Bell, Briar
Mata-Daboin, Alejandro
Peixoto-Neves, Dieniffer
Collier, Daniel M
Cordero-Morales, Julio F
Jaggar, Jonathan H
description Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl concentration ([Cl ] ) due to the activation of TMEM16A, a Cl channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl ] , which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl signaling and WNK kinase activity in ECs to control arterial contractility.
doi_str_mv 10.1073/pnas.2322135121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11009681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039451211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</originalsourceid><addsrcrecordid>eNpdkTtPwzAURi0EoqUwsyFLLCwpvrGT2FOFKl4CwQJitFznlrqkcbHTSvx7ErU8Jw8-Pr7f_Qg5BjYEVvDzZW3iMOVpCjyDFHZIH5iCJBeK7ZI-Y2mRSJGKHjmIcc4YU5lk-6THZZZLlYs-Gb083NE312qQukgNXZvojW3cGqmdVT64EmnEOvpAXU2xLn0zw8qZilqsqnhI9qamini0PQfk-eryaXyT3D9e344v7hPLJTTJhCvLAMqyAMCJyUswhUyRi8KCkiCxyDk3th0JwKLhgglhstSwIocsV5wPyGjjXa4mCywt1k0wlV4GtzDhQ3vj9N-b2s30q19rgDZ1LqE1nG0Nwb-vMDZ64WKXwdToV1FzxnmLKug-O_2Hzv0q1G2-jlKiW3UnPN9QNvgYA06_pwGmu3Z0147-aad9cfI7xDf_VQf_BDW1icQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039451211</pqid></control><display><type>article</type><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</creator><creatorcontrib>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</creatorcontrib><description>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl concentration ([Cl ] ) due to the activation of TMEM16A, a Cl channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl ] , which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl signaling and WNK kinase activity in ECs to control arterial contractility.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2322135121</identifier><identifier>PMID: 38568964</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arteries ; Biological Sciences ; Blood flow ; Blood pressure ; Blood vessels ; C-Terminus ; Calcium (intracellular) ; Calcium channels ; Calcium ions ; Calcium signalling ; Channels ; Chlorides ; Chlorides - metabolism ; Contractility ; Endothelial cells ; Endothelial Cells - metabolism ; Intracellular ; Intracellular signalling ; Kinases ; Lysine ; Mice ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Signal Transduction - physiology ; Substrates ; Transient receptor potential proteins ; TRPV Cation Channels - metabolism ; Vasoactive agents ; Vasodilation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (15), p.e2322135121</ispartof><rights>Copyright National Academy of Sciences Apr 9, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</citedby><cites>FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</cites><orcidid>0000-0002-1190-5433 ; 0000-0003-1831-7842 ; 0000-0001-9797-6402 ; 0000-0002-7900-7939 ; 0000-0001-9431-9271 ; 0000-0003-1505-3335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009681/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009681/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38568964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garrud, Tessa A C</creatorcontrib><creatorcontrib>Bell, Briar</creatorcontrib><creatorcontrib>Mata-Daboin, Alejandro</creatorcontrib><creatorcontrib>Peixoto-Neves, Dieniffer</creatorcontrib><creatorcontrib>Collier, Daniel M</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F</creatorcontrib><creatorcontrib>Jaggar, Jonathan H</creatorcontrib><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl concentration ([Cl ] ) due to the activation of TMEM16A, a Cl channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl ] , which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl signaling and WNK kinase activity in ECs to control arterial contractility.</description><subject>Animals</subject><subject>Arteries</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>C-Terminus</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Channels</subject><subject>Chlorides</subject><subject>Chlorides - metabolism</subject><subject>Contractility</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Lysine</subject><subject>Mice</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Substrates</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Vasoactive agents</subject><subject>Vasodilation</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtPwzAURi0EoqUwsyFLLCwpvrGT2FOFKl4CwQJitFznlrqkcbHTSvx7ErU8Jw8-Pr7f_Qg5BjYEVvDzZW3iMOVpCjyDFHZIH5iCJBeK7ZI-Y2mRSJGKHjmIcc4YU5lk-6THZZZLlYs-Gb083NE312qQukgNXZvojW3cGqmdVT64EmnEOvpAXU2xLn0zw8qZilqsqnhI9qamini0PQfk-eryaXyT3D9e344v7hPLJTTJhCvLAMqyAMCJyUswhUyRi8KCkiCxyDk3th0JwKLhgglhstSwIocsV5wPyGjjXa4mCywt1k0wlV4GtzDhQ3vj9N-b2s30q19rgDZ1LqE1nG0Nwb-vMDZ64WKXwdToV1FzxnmLKug-O_2Hzv0q1G2-jlKiW3UnPN9QNvgYA06_pwGmu3Z0147-aad9cfI7xDf_VQf_BDW1icQ</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Garrud, Tessa A C</creator><creator>Bell, Briar</creator><creator>Mata-Daboin, Alejandro</creator><creator>Peixoto-Neves, Dieniffer</creator><creator>Collier, Daniel M</creator><creator>Cordero-Morales, Julio F</creator><creator>Jaggar, Jonathan H</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1190-5433</orcidid><orcidid>https://orcid.org/0000-0003-1831-7842</orcidid><orcidid>https://orcid.org/0000-0001-9797-6402</orcidid><orcidid>https://orcid.org/0000-0002-7900-7939</orcidid><orcidid>https://orcid.org/0000-0001-9431-9271</orcidid><orcidid>https://orcid.org/0000-0003-1505-3335</orcidid></search><sort><creationdate>20240409</creationdate><title>WNK kinase is a vasoactive chloride sensor in endothelial cells</title><author>Garrud, Tessa A C ; Bell, Briar ; Mata-Daboin, Alejandro ; Peixoto-Neves, Dieniffer ; Collier, Daniel M ; Cordero-Morales, Julio F ; Jaggar, Jonathan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b39c011dd711eba6d1a782e347c19818e7633ac96411cea34044a52a076156933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Arteries</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>C-Terminus</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Channels</topic><topic>Chlorides</topic><topic>Chlorides - metabolism</topic><topic>Contractility</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Lysine</topic><topic>Mice</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Substrates</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Vasoactive agents</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrud, Tessa A C</creatorcontrib><creatorcontrib>Bell, Briar</creatorcontrib><creatorcontrib>Mata-Daboin, Alejandro</creatorcontrib><creatorcontrib>Peixoto-Neves, Dieniffer</creatorcontrib><creatorcontrib>Collier, Daniel M</creatorcontrib><creatorcontrib>Cordero-Morales, Julio F</creatorcontrib><creatorcontrib>Jaggar, Jonathan H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrud, Tessa A C</au><au>Bell, Briar</au><au>Mata-Daboin, Alejandro</au><au>Peixoto-Neves, Dieniffer</au><au>Collier, Daniel M</au><au>Cordero-Morales, Julio F</au><au>Jaggar, Jonathan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WNK kinase is a vasoactive chloride sensor in endothelial cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-09</date><risdate>2024</risdate><volume>121</volume><issue>15</issue><spage>e2322135121</spage><pages>e2322135121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl ) is the most abundant anion in ECs and the Cl sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl concentration ([Cl ] ) due to the activation of TMEM16A, a Cl channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl ] , which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl signaling and WNK kinase activity in ECs to control arterial contractility.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38568964</pmid><doi>10.1073/pnas.2322135121</doi><orcidid>https://orcid.org/0000-0002-1190-5433</orcidid><orcidid>https://orcid.org/0000-0003-1831-7842</orcidid><orcidid>https://orcid.org/0000-0001-9797-6402</orcidid><orcidid>https://orcid.org/0000-0002-7900-7939</orcidid><orcidid>https://orcid.org/0000-0001-9431-9271</orcidid><orcidid>https://orcid.org/0000-0003-1505-3335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (15), p.e2322135121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11009681
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Arteries
Biological Sciences
Blood flow
Blood pressure
Blood vessels
C-Terminus
Calcium (intracellular)
Calcium channels
Calcium ions
Calcium signalling
Channels
Chlorides
Chlorides - metabolism
Contractility
Endothelial cells
Endothelial Cells - metabolism
Intracellular
Intracellular signalling
Kinases
Lysine
Mice
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Signal Transduction - physiology
Substrates
Transient receptor potential proteins
TRPV Cation Channels - metabolism
Vasoactive agents
Vasodilation
title WNK kinase is a vasoactive chloride sensor in endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WNK%20kinase%20is%20a%20vasoactive%20chloride%20sensor%20in%20endothelial%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garrud,%20Tessa%20A%20C&rft.date=2024-04-09&rft.volume=121&rft.issue=15&rft.spage=e2322135121&rft.pages=e2322135121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2322135121&rft_dat=%3Cproquest_pubme%3E3039451211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039451211&rft_id=info:pmid/38568964&rfr_iscdi=true