Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis
The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs)...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-04, Vol.58 (14), p.6415-6424 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6424 |
---|---|
container_issue | 14 |
container_start_page | 6415 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Liu, Zekun Jin, Bosen Rao, Dandan Bentel, Michael J. Liu, Tianchi Gao, Jinyu Men, Yujie Liu, Jinyong |
description | The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C–H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4 – •), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C–H or −COO–, characterized the oxidation products, and quantified the F atom balance. The SO4 – • oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4 – • versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4 – • and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4 – • oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants. |
doi_str_mv | 10.1021/acs.est.3c06289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11008247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035074269</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-e8ea3c7691d7ed66fbcc5dd15cc52011aa281a94831149a332a4a79f22ef84673</originalsourceid><addsrcrecordid>eNp1Ul2LEzEUDaK4dfXZNwn4Ish08zEfGV-k1K0KxRa7gm_hbibTZpmZjElmd_vf_HFmtrWo4NO9uTnn3HvgIPSSkikljF6A8lPtw5QrkjNRPkITmjGSZCKjj9GEEMqTkuffz9Az728IIYwT8RSdcZExUfBsgn6u7k0FwdxqfOWg87V1bXzaDtsaf4E6dslX3UDQFV40g3Wme-gvw047vBma2o4D_w7PbduDMz5S70zY4aXegtrj9WK2wZvgBhUGpz2GrsKrvrcuDJ0JJk7iopkylVF4rZ2PilEPfzDb6Gu8I150EFk7rQbn43PWQbP3xj9HT2povH5xrOfo2-Lyav4pWa4-fp7PlgmklIVECw1cFXlJq0JXeV5fK5VVFc1iYYRSACYolKnglKYlcM4ghaKsGdO1SPOCn6P3B91-uG51pXQXHDSyd6YFt5cWjPz7pzM7ubW3klJCBEtHhTdHBWd_DNGZbI1Xummg03bwkhOekSJleRmhr_-B3tjBRccPKCFoRtIsoi4OKOWs907Xp2sokWM0ZIyGHNnHaETGqz9NnPC_sxABbw-AkXna-T-5XzYpyUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038815045</pqid></control><display><type>article</type><title>Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis</title><source>American Chemical Society Journals</source><creator>Liu, Zekun ; Jin, Bosen ; Rao, Dandan ; Bentel, Michael J. ; Liu, Tianchi ; Gao, Jinyu ; Men, Yujie ; Liu, Jinyong</creator><creatorcontrib>Liu, Zekun ; Jin, Bosen ; Rao, Dandan ; Bentel, Michael J. ; Liu, Tianchi ; Gao, Jinyu ; Men, Yujie ; Liu, Jinyong</creatorcontrib><description>The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C–H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4 – •), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C–H or −COO–, characterized the oxidation products, and quantified the F atom balance. The SO4 – • oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4 – • versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4 – • and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4 – • oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c06289</identifier><identifier>PMID: 38528735</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acidic oxides ; Assaying ; Carboxylates ; Decarboxylation ; Digestion ; Free radicals ; Functional groups ; Hydroxyl radicals ; Oxidants ; Oxidation ; Oxidizing agents ; Perfluoroalkyl & polyfluoroalkyl substances ; Physico-Chemical Treatment and Resource Recovery ; Pollutants ; Precursors ; Sulfonates</subject><ispartof>Environmental science & technology, 2024-04, Vol.58 (14), p.6415-6424</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Apr 9, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a412t-e8ea3c7691d7ed66fbcc5dd15cc52011aa281a94831149a332a4a79f22ef84673</cites><orcidid>0000-0003-3802-2662 ; 0000-0003-1404-113X ; 0000-0003-1473-5377 ; 0000-0001-9811-3828 ; 0000-0001-7659-3437 ; 0000-0002-1751-3430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c06289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c06289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38528735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zekun</creatorcontrib><creatorcontrib>Jin, Bosen</creatorcontrib><creatorcontrib>Rao, Dandan</creatorcontrib><creatorcontrib>Bentel, Michael J.</creatorcontrib><creatorcontrib>Liu, Tianchi</creatorcontrib><creatorcontrib>Gao, Jinyu</creatorcontrib><creatorcontrib>Men, Yujie</creatorcontrib><creatorcontrib>Liu, Jinyong</creatorcontrib><title>Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C–H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4 – •), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C–H or −COO–, characterized the oxidation products, and quantified the F atom balance. The SO4 – • oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4 – • versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4 – • and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4 – • oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.</description><subject>Acidic oxides</subject><subject>Assaying</subject><subject>Carboxylates</subject><subject>Decarboxylation</subject><subject>Digestion</subject><subject>Free radicals</subject><subject>Functional groups</subject><subject>Hydroxyl radicals</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Perfluoroalkyl & polyfluoroalkyl substances</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Pollutants</subject><subject>Precursors</subject><subject>Sulfonates</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1Ul2LEzEUDaK4dfXZNwn4Ish08zEfGV-k1K0KxRa7gm_hbibTZpmZjElmd_vf_HFmtrWo4NO9uTnn3HvgIPSSkikljF6A8lPtw5QrkjNRPkITmjGSZCKjj9GEEMqTkuffz9Az728IIYwT8RSdcZExUfBsgn6u7k0FwdxqfOWg87V1bXzaDtsaf4E6dslX3UDQFV40g3Wme-gvw047vBma2o4D_w7PbduDMz5S70zY4aXegtrj9WK2wZvgBhUGpz2GrsKrvrcuDJ0JJk7iopkylVF4rZ2PilEPfzDb6Gu8I150EFk7rQbn43PWQbP3xj9HT2povH5xrOfo2-Lyav4pWa4-fp7PlgmklIVECw1cFXlJq0JXeV5fK5VVFc1iYYRSACYolKnglKYlcM4ghaKsGdO1SPOCn6P3B91-uG51pXQXHDSyd6YFt5cWjPz7pzM7ubW3klJCBEtHhTdHBWd_DNGZbI1Xummg03bwkhOekSJleRmhr_-B3tjBRccPKCFoRtIsoi4OKOWs907Xp2sokWM0ZIyGHNnHaETGqz9NnPC_sxABbw-AkXna-T-5XzYpyUg</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Liu, Zekun</creator><creator>Jin, Bosen</creator><creator>Rao, Dandan</creator><creator>Bentel, Michael J.</creator><creator>Liu, Tianchi</creator><creator>Gao, Jinyu</creator><creator>Men, Yujie</creator><creator>Liu, Jinyong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3802-2662</orcidid><orcidid>https://orcid.org/0000-0003-1404-113X</orcidid><orcidid>https://orcid.org/0000-0003-1473-5377</orcidid><orcidid>https://orcid.org/0000-0001-9811-3828</orcidid><orcidid>https://orcid.org/0000-0001-7659-3437</orcidid><orcidid>https://orcid.org/0000-0002-1751-3430</orcidid></search><sort><creationdate>20240409</creationdate><title>Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis</title><author>Liu, Zekun ; Jin, Bosen ; Rao, Dandan ; Bentel, Michael J. ; Liu, Tianchi ; Gao, Jinyu ; Men, Yujie ; Liu, Jinyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-e8ea3c7691d7ed66fbcc5dd15cc52011aa281a94831149a332a4a79f22ef84673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Assaying</topic><topic>Carboxylates</topic><topic>Decarboxylation</topic><topic>Digestion</topic><topic>Free radicals</topic><topic>Functional groups</topic><topic>Hydroxyl radicals</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Perfluoroalkyl & polyfluoroalkyl substances</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Pollutants</topic><topic>Precursors</topic><topic>Sulfonates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zekun</creatorcontrib><creatorcontrib>Jin, Bosen</creatorcontrib><creatorcontrib>Rao, Dandan</creatorcontrib><creatorcontrib>Bentel, Michael J.</creatorcontrib><creatorcontrib>Liu, Tianchi</creatorcontrib><creatorcontrib>Gao, Jinyu</creatorcontrib><creatorcontrib>Men, Yujie</creatorcontrib><creatorcontrib>Liu, Jinyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zekun</au><au>Jin, Bosen</au><au>Rao, Dandan</au><au>Bentel, Michael J.</au><au>Liu, Tianchi</au><au>Gao, Jinyu</au><au>Men, Yujie</au><au>Liu, Jinyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-04-09</date><risdate>2024</risdate><volume>58</volume><issue>14</issue><spage>6415</spage><epage>6424</epage><pages>6415-6424</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C–H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4 – •), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C–H or −COO–, characterized the oxidation products, and quantified the F atom balance. The SO4 – • oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4 – • versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4 – • and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4 – • oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38528735</pmid><doi>10.1021/acs.est.3c06289</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3802-2662</orcidid><orcidid>https://orcid.org/0000-0003-1404-113X</orcidid><orcidid>https://orcid.org/0000-0003-1473-5377</orcidid><orcidid>https://orcid.org/0000-0001-9811-3828</orcidid><orcidid>https://orcid.org/0000-0001-7659-3437</orcidid><orcidid>https://orcid.org/0000-0002-1751-3430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-04, Vol.58 (14), p.6415-6424 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11008247 |
source | American Chemical Society Journals |
subjects | Acidic oxides Assaying Carboxylates Decarboxylation Digestion Free radicals Functional groups Hydroxyl radicals Oxidants Oxidation Oxidizing agents Perfluoroalkyl & polyfluoroalkyl substances Physico-Chemical Treatment and Resource Recovery Pollutants Precursors Sulfonates |
title | Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Transformation%20of%20Nafion-Related%20Fluorinated%20Ether%20Sulfonates:%20Comparison%20with%20Legacy%20PFAS%20Structures%20and%20Opportunities%20of%20Acidic%20Persulfate%20Digestion%20for%20PFAS%20Precursor%20Analysis&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Liu,%20Zekun&rft.date=2024-04-09&rft.volume=58&rft.issue=14&rft.spage=6415&rft.epage=6424&rft.pages=6415-6424&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c06289&rft_dat=%3Cproquest_pubme%3E3035074269%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038815045&rft_id=info:pmid/38528735&rfr_iscdi=true |