Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province

The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2023-11, Vol.178 (11), p.80-80, Article 80
Hauptverfasser: Foley, Michelle L., Putlitz, Benita, Baumgartner, Lukas P., Renda, Emiliano M., Ulianov, Alexey, Siron, Guillaume, Chiaradia, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 11
container_start_page 80
container_title Contributions to mineralogy and petrology
container_volume 178
creator Foley, Michelle L.
Putlitz, Benita
Baumgartner, Lukas P.
Renda, Emiliano M.
Ulianov, Alexey
Siron, Guillaume
Chiaradia, Massimo
description The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18 O-enriched values (δ 18 O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ 18 O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ 18 O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.
doi_str_mv 10.1007/s00410-023-02065-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11008082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A770254127</galeid><sourcerecordid>A770254127</sourcerecordid><originalsourceid>FETCH-LOGICAL-a603t-5d74683c2b5d92e1c2d956c8e3a55a5cf04b824bfa7060a2f79690c5d0c238603</originalsourceid><addsrcrecordid>eNp9UlFrFDEYDKLYs_oHfJCAL75s_ZJsssmTHEfVgwML6psQstnsXupeUpPdQv-96V1trRyyhCX5ZiaZYRB6TeCMADTvM0BNoALKygLBK_IELUjNaAVKNE_RAqCMG6XUCXqR8yWUvVT8OTphUhAhQSzQj3XnwuT7Gx8GbNOcJzNiG8OUfDtPPoaMfcDT1uELM5khBm8CXm1jwEv_0-GvfvTWW7wxaXB4PQQX54wvUrz2wbqX6Flvxuxe3f1P0feP599Wn6vNl0_r1XJTGQFsqnjX1EIyS1veKeqIpZ3iwkrHDOeG2x7qVtK67U0DAgztGyUUWN6BpcUJsFP04aB7Nbc719niKJlRXyW_M-lGR-P140nwWz3Ea01KjhIkLQrv7hRS_DW7POmdz9aNo9k70gyYooxT2hTo23-gl3FOofjTVEoCnAnJH1CDGZ32oY_lYnsrqpdNA5TXZK9VHUENLrjyyhhc78vxI_zZEXz5Orfz9iiBHgg2xZyT6-9DIaBvS6QPJdKlRHpfIk0K6c3fcd5T_rSmANgBkMsoDC49RPAf2d9c-NAh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881053685</pqid></control><display><type>article</type><title>Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province</title><source>SpringerLink Journals</source><creator>Foley, Michelle L. ; Putlitz, Benita ; Baumgartner, Lukas P. ; Renda, Emiliano M. ; Ulianov, Alexey ; Siron, Guillaume ; Chiaradia, Massimo</creator><creatorcontrib>Foley, Michelle L. ; Putlitz, Benita ; Baumgartner, Lukas P. ; Renda, Emiliano M. ; Ulianov, Alexey ; Siron, Guillaume ; Chiaradia, Massimo</creatorcontrib><description>The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18 O-enriched values (δ 18 O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ 18 O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ 18 O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-023-02065-1</identifier><identifier>PMID: 38616806</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basalt ; Crust ; Earth ; Earth and Environmental Science ; Earth Sciences ; Fertility ; Geochronology ; Geochronometry ; Geology ; Hafnium ; Hafnium isotopes ; Heat flux ; Heat transfer ; Isotopes ; Mantle ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Trace elements ; Volcanic activity ; Volcanic rocks ; Volcanism ; Zircon</subject><ispartof>Contributions to mineralogy and petrology, 2023-11, Vol.178 (11), p.80-80, Article 80</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a603t-5d74683c2b5d92e1c2d956c8e3a55a5cf04b824bfa7060a2f79690c5d0c238603</citedby><cites>FETCH-LOGICAL-a603t-5d74683c2b5d92e1c2d956c8e3a55a5cf04b824bfa7060a2f79690c5d0c238603</cites><orcidid>0000-0003-4420-2416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-023-02065-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-023-02065-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38616806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foley, Michelle L.</creatorcontrib><creatorcontrib>Putlitz, Benita</creatorcontrib><creatorcontrib>Baumgartner, Lukas P.</creatorcontrib><creatorcontrib>Renda, Emiliano M.</creatorcontrib><creatorcontrib>Ulianov, Alexey</creatorcontrib><creatorcontrib>Siron, Guillaume</creatorcontrib><creatorcontrib>Chiaradia, Massimo</creatorcontrib><title>Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><addtitle>Contrib Mineral Petrol</addtitle><description>The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18 O-enriched values (δ 18 O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ 18 O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ 18 O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.</description><subject>Basalt</subject><subject>Crust</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fertility</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Hafnium</subject><subject>Hafnium isotopes</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Isotopes</subject><subject>Mantle</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Trace elements</subject><subject>Volcanic activity</subject><subject>Volcanic rocks</subject><subject>Volcanism</subject><subject>Zircon</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UlFrFDEYDKLYs_oHfJCAL75s_ZJsssmTHEfVgwML6psQstnsXupeUpPdQv-96V1trRyyhCX5ZiaZYRB6TeCMADTvM0BNoALKygLBK_IELUjNaAVKNE_RAqCMG6XUCXqR8yWUvVT8OTphUhAhQSzQj3XnwuT7Gx8GbNOcJzNiG8OUfDtPPoaMfcDT1uELM5khBm8CXm1jwEv_0-GvfvTWW7wxaXB4PQQX54wvUrz2wbqX6Flvxuxe3f1P0feP599Wn6vNl0_r1XJTGQFsqnjX1EIyS1veKeqIpZ3iwkrHDOeG2x7qVtK67U0DAgztGyUUWN6BpcUJsFP04aB7Nbc719niKJlRXyW_M-lGR-P140nwWz3Ea01KjhIkLQrv7hRS_DW7POmdz9aNo9k70gyYooxT2hTo23-gl3FOofjTVEoCnAnJH1CDGZ32oY_lYnsrqpdNA5TXZK9VHUENLrjyyhhc78vxI_zZEXz5Orfz9iiBHgg2xZyT6-9DIaBvS6QPJdKlRHpfIk0K6c3fcd5T_rSmANgBkMsoDC49RPAf2d9c-NAh</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Foley, Michelle L.</creator><creator>Putlitz, Benita</creator><creator>Baumgartner, Lukas P.</creator><creator>Renda, Emiliano M.</creator><creator>Ulianov, Alexey</creator><creator>Siron, Guillaume</creator><creator>Chiaradia, Massimo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4420-2416</orcidid></search><sort><creationdate>20231101</creationdate><title>Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province</title><author>Foley, Michelle L. ; Putlitz, Benita ; Baumgartner, Lukas P. ; Renda, Emiliano M. ; Ulianov, Alexey ; Siron, Guillaume ; Chiaradia, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a603t-5d74683c2b5d92e1c2d956c8e3a55a5cf04b824bfa7060a2f79690c5d0c238603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basalt</topic><topic>Crust</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fertility</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Hafnium</topic><topic>Hafnium isotopes</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Isotopes</topic><topic>Mantle</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Trace elements</topic><topic>Volcanic activity</topic><topic>Volcanic rocks</topic><topic>Volcanism</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, Michelle L.</creatorcontrib><creatorcontrib>Putlitz, Benita</creatorcontrib><creatorcontrib>Baumgartner, Lukas P.</creatorcontrib><creatorcontrib>Renda, Emiliano M.</creatorcontrib><creatorcontrib>Ulianov, Alexey</creatorcontrib><creatorcontrib>Siron, Guillaume</creatorcontrib><creatorcontrib>Chiaradia, Massimo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, Michelle L.</au><au>Putlitz, Benita</au><au>Baumgartner, Lukas P.</au><au>Renda, Emiliano M.</au><au>Ulianov, Alexey</au><au>Siron, Guillaume</au><au>Chiaradia, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><addtitle>Contrib Mineral Petrol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>178</volume><issue>11</issue><spage>80</spage><epage>80</epage><pages>80-80</pages><artnum>80</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U–Pb geochronology at ca. 148–153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18 O-enriched values (δ 18 O from 7 to 9.5‰) with correspondingly negative initial εHf values (− 2.0 to − 8.0). The WCA zircon have δ 18 O values between 6 and 7‰ and εHf values ranging between − 4.0 and + 1.5. Binary δ 18 O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38616806</pmid><doi>10.1007/s00410-023-02065-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4420-2416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2023-11, Vol.178 (11), p.80-80, Article 80
issn 0010-7999
1432-0967
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11008082
source SpringerLink Journals
subjects Basalt
Crust
Earth
Earth and Environmental Science
Earth Sciences
Fertility
Geochronology
Geochronometry
Geology
Hafnium
Hafnium isotopes
Heat flux
Heat transfer
Isotopes
Mantle
Mineral Resources
Mineralogy
Original Paper
Petrology
Trace elements
Volcanic activity
Volcanic rocks
Volcanism
Zircon
title Identifying crustal contributions in the Patagonian Chon Aike Silicic Large Igneous Province
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20crustal%20contributions%20in%20the%20Patagonian%20Chon%20Aike%20Silicic%20Large%20Igneous%20Province&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Foley,%20Michelle%20L.&rft.date=2023-11-01&rft.volume=178&rft.issue=11&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.artnum=80&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-023-02065-1&rft_dat=%3Cgale_pubme%3EA770254127%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881053685&rft_id=info:pmid/38616806&rft_galeid=A770254127&rfr_iscdi=true