Peripheral Choroidal Response to Localized Defocus Blur: Influence of Native Peripheral Aberrations

This study aims to examine the short-term peripheral choroidal thickness (PChT) response to signed defocus blur, both with and without native peripheral aberrations. This examination will provide insights into the role of peripheral aberration in detecting signs of defocus. The peripheral retina (te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2024-04, Vol.65 (4), p.14
Hauptverfasser: Pusti, Dibyendu, Patel, Nimesh B, Ostrin, Lisa A, Nti, Augustine N, Das, Siddarth, Yoon, Geunyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to examine the short-term peripheral choroidal thickness (PChT) response to signed defocus blur, both with and without native peripheral aberrations. This examination will provide insights into the role of peripheral aberration in detecting signs of defocus. The peripheral retina (temporal 15°) of the right eye was exposed to a localized video stimulus in 11 young adults. An adaptive optics system induced 2D myopic or hyperopic defocus onto the stimulus, with or without correcting native peripheral ocular aberrations (adaptive optics [AO] or NoAO defocus conditions). Choroidal scans were captured using Heidelberg Spectralis OCT at baseline, exposure (10, 20, and 30 minutes), and recovery phases (4, 8, and 15 minutes). Neural network-based automated MATLAB segmentation program measured PChT changes from OCT scans, and statistical analysis evaluated the effects of different optical conditions over time. During the exposure phase, NoAO myopic and hyperopic defocus conditions exhibited distinct bidirectional PChT alterations, showing average thickening (10.0 ± 5.3 µm) and thinning (-9.1 ± 5.5 µm), respectively. In contrast, induced AO defocus conditions did not demonstrate a significant change from baseline. PChT recovery to baseline occurred for all conditions. The unexposed fovea did not show any significant ChT change, indicating a localized ChT response to retinal blur. We discovered that the PChT response serves as a marker for detecting peripheral retinal myopic and hyperopic defocus blur, especially in the presence of peripheral aberrations. These findings highlight the significant role of peripheral oriented blur in cueing peripheral defocus sign detection.
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.65.4.14