Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping

Summary Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, and zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek “d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biostatistics (Oxford, England) England), 2023-10, Vol.24 (4), p.922-944
Hauptverfasser: Gao, Leiwen, Banerjee, Sudipto, Ritz, Beate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 4
container_start_page 922
container_title Biostatistics (Oxford, England)
container_volume 24
creator Gao, Leiwen
Banerjee, Sudipto
Ritz, Beate
description Summary Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, and zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek “difference boundaries” that separate neighboring regions with significantly different spatial effects. Matters are more challenging with multiple outcomes over each unit, where we capture dependence among diseases as well as across the areal units. Here, we address multivariate difference boundary detection for correlated diseases. We formulate the problem in terms of Bayesian pairwise multiple comparisons and seek the posterior probabilities of neighboring spatial effects being different. To achieve this, we endow the spatial random effects with a discrete probability law using a class of multivariate areally referenced Dirichlet process models that accommodate spatial and interdisease dependence. We evaluate our method through simulation studies and detect difference boundaries for multiple cancers using data from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.
doi_str_mv 10.1093/biostatistics/kxac013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biostatistics/kxac013</oup_id><sourcerecordid>2673357743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-7523e22ee0b469e7fb6d30767aa719263f2bd3d134518eb1ef0b719bc29ccd413</originalsourceid><addsrcrecordid>eNqNkUtPxCAUhYnR-P4JGpZu6vAqTFfGtyYaFzobN4TS2xHtlFqo0X8vOuNEd64uyTnnu8BBaI-SQ0oKPiqdD9FEF6KzYfTybiyhfAVtUiHHmeC5Wv0-55mQQmygrRCeCWGMS76ONnguc0XGahM93ncJYhp85uoaemgt4BM_tJXpP_AZRLDR-RbXvse3QxNd1wC-G6L1Mwh4Elw7xSfmA4IzbUIEMAHwrem6JOygtdo0AXYXcxtNLs4fTq-ym7vL69Pjm8wKxWKmcsaBMQBSClmAqktZcaKkMkbRgkles7LiFeUip2MoKdSkTEJpWWFtJSjfRkdzbjeUM6gstLE3je56N0uP0N44_Vdp3ZOe-jdNKSGiUDIRDhaE3r8OEKKeuWChaUwLfgiaScXTjyrBkzWfW23vQ-ihXu6hRH8Vo_8UoxfFpNz-70suUz9NJAOZG_zQ_ZP5CY8ios8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673357743</pqid></control><display><type>article</type><title>Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Gao, Leiwen ; Banerjee, Sudipto ; Ritz, Beate</creator><creatorcontrib>Gao, Leiwen ; Banerjee, Sudipto ; Ritz, Beate</creatorcontrib><description>Summary Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, and zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek “difference boundaries” that separate neighboring regions with significantly different spatial effects. Matters are more challenging with multiple outcomes over each unit, where we capture dependence among diseases as well as across the areal units. Here, we address multivariate difference boundary detection for correlated diseases. We formulate the problem in terms of Bayesian pairwise multiple comparisons and seek the posterior probabilities of neighboring spatial effects being different. To achieve this, we endow the spatial random effects with a discrete probability law using a class of multivariate areally referenced Dirichlet process models that accommodate spatial and interdisease dependence. We evaluate our method through simulation studies and detect difference boundaries for multiple cancers using data from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxac013</identifier><identifier>PMID: 35657087</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Computer Simulation ; Humans ; Incidence ; Probability</subject><ispartof>Biostatistics (Oxford, England), 2023-10, Vol.24 (4), p.922-944</ispartof><rights>The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com . 2022</rights><rights>The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: . 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-7523e22ee0b469e7fb6d30767aa719263f2bd3d134518eb1ef0b719bc29ccd413</citedby><cites>FETCH-LOGICAL-c472t-7523e22ee0b469e7fb6d30767aa719263f2bd3d134518eb1ef0b719bc29ccd413</cites><orcidid>0000-0002-2239-208X ; 0000-0001-6976-7339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35657087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Leiwen</creatorcontrib><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Ritz, Beate</creatorcontrib><title>Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping</title><title>Biostatistics (Oxford, England)</title><addtitle>Biostatistics</addtitle><description>Summary Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, and zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek “difference boundaries” that separate neighboring regions with significantly different spatial effects. Matters are more challenging with multiple outcomes over each unit, where we capture dependence among diseases as well as across the areal units. Here, we address multivariate difference boundary detection for correlated diseases. We formulate the problem in terms of Bayesian pairwise multiple comparisons and seek the posterior probabilities of neighboring spatial effects being different. To achieve this, we endow the spatial random effects with a discrete probability law using a class of multivariate areally referenced Dirichlet process models that accommodate spatial and interdisease dependence. We evaluate our method through simulation studies and detect difference boundaries for multiple cancers using data from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.</description><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Incidence</subject><subject>Probability</subject><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPxCAUhYnR-P4JGpZu6vAqTFfGtyYaFzobN4TS2xHtlFqo0X8vOuNEd64uyTnnu8BBaI-SQ0oKPiqdD9FEF6KzYfTybiyhfAVtUiHHmeC5Wv0-55mQQmygrRCeCWGMS76ONnguc0XGahM93ncJYhp85uoaemgt4BM_tJXpP_AZRLDR-RbXvse3QxNd1wC-G6L1Mwh4Elw7xSfmA4IzbUIEMAHwrem6JOygtdo0AXYXcxtNLs4fTq-ym7vL69Pjm8wKxWKmcsaBMQBSClmAqktZcaKkMkbRgkles7LiFeUip2MoKdSkTEJpWWFtJSjfRkdzbjeUM6gstLE3je56N0uP0N44_Vdp3ZOe-jdNKSGiUDIRDhaE3r8OEKKeuWChaUwLfgiaScXTjyrBkzWfW23vQ-ihXu6hRH8Vo_8UoxfFpNz-70suUz9NJAOZG_zQ_ZP5CY8ios8</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Gao, Leiwen</creator><creator>Banerjee, Sudipto</creator><creator>Ritz, Beate</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2239-208X</orcidid><orcidid>https://orcid.org/0000-0001-6976-7339</orcidid></search><sort><creationdate>20231018</creationdate><title>Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping</title><author>Gao, Leiwen ; Banerjee, Sudipto ; Ritz, Beate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-7523e22ee0b469e7fb6d30767aa719263f2bd3d134518eb1ef0b719bc29ccd413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Incidence</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Leiwen</creatorcontrib><creatorcontrib>Banerjee, Sudipto</creatorcontrib><creatorcontrib>Ritz, Beate</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Leiwen</au><au>Banerjee, Sudipto</au><au>Ritz, Beate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><addtitle>Biostatistics</addtitle><date>2023-10-18</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>922</spage><epage>944</epage><pages>922-944</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>Summary Regional aggregates of health outcomes over delineated administrative units (e.g., states, counties, and zip codes), or areal units, are widely used by epidemiologists to map mortality or incidence rates and capture geographic variation. To capture health disparities over regions, we seek “difference boundaries” that separate neighboring regions with significantly different spatial effects. Matters are more challenging with multiple outcomes over each unit, where we capture dependence among diseases as well as across the areal units. Here, we address multivariate difference boundary detection for correlated diseases. We formulate the problem in terms of Bayesian pairwise multiple comparisons and seek the posterior probabilities of neighboring spatial effects being different. To achieve this, we endow the spatial random effects with a discrete probability law using a class of multivariate areally referenced Dirichlet process models that accommodate spatial and interdisease dependence. We evaluate our method through simulation studies and detect difference boundaries for multiple cancers using data from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35657087</pmid><doi>10.1093/biostatistics/kxac013</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2239-208X</orcidid><orcidid>https://orcid.org/0000-0001-6976-7339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-4644
ispartof Biostatistics (Oxford, England), 2023-10, Vol.24 (4), p.922-944
issn 1465-4644
1468-4357
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004976
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Bayes Theorem
Computer Simulation
Humans
Incidence
Probability
title Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Difference%20Boundary%20Detection%20for%20Multiple%20Outcomes%20Using%20Bayesian%20Disease%20Mapping&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Gao,%20Leiwen&rft.date=2023-10-18&rft.volume=24&rft.issue=4&rft.spage=922&rft.epage=944&rft.pages=922-944&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxac013&rft_dat=%3Cproquest_pubme%3E2673357743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673357743&rft_id=info:pmid/35657087&rft_oup_id=10.1093/biostatistics/kxac013&rfr_iscdi=true