High-Throughput Interactome Determination via Sulfur Anomalous Scattering

We propose a novel approach for detecting the binding between proteins making use of the anomalous diffraction of natively present heavy elements, e.g., sulfurs, inside molecular three-dimensional structures. In particular, we analytically and numerically show that the diffraction patterns produced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-04, Vol.15 (13), p.3478-3485
Hauptverfasser: Miotto, Mattia, Milanetti, Edoardo, Mincigrucci, Riccardo, Masciovecchio, Claudio, Ruocco, Giancarlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel approach for detecting the binding between proteins making use of the anomalous diffraction of natively present heavy elements, e.g., sulfurs, inside molecular three-dimensional structures. In particular, we analytically and numerically show that the diffraction patterns produced by the anomalous scattering of the sulfur atoms in a given direction depend additively on the relative distances between all couples of sulfur atoms. Thus, the differences in the patterns produced by bound proteins with respect to their nonbonded states can be exploited to rapidly assess protein complex formation. On the basis of our results, we suggest a possible experimental procedure for detecting protein–protein binding. Overall, the completely label-free and rapid method we propose may be readily extended to probe interactions on a large scale, thus paving the way for the development of a novel field of research based on a synchrotron light source.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c03632