Morphological diversity of cancer cells predicts prognosis across tumor types

Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 2024-04, Vol.116 (4), p.555-564
Hauptverfasser: Sali, Rasoul, Jiang, Yuming, Attaranzadeh, Armin, Holmes, Brittany, Li, Ruijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 4
container_start_page 555
container_title JNCI : Journal of the National Cancer Institute
container_volume 116
creator Sali, Rasoul
Jiang, Yuming
Attaranzadeh, Armin
Holmes, Brittany
Li, Ruijiang
description Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P 
doi_str_mv 10.1093/jnci/djad243
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10995848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892010390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLGjDwyEOqPOLYnhCq-pFYsMFuO47Su0jjYSaX-exJaKnjLnXTv3t27A-Aao3uMJJ2ua-OmxVoXJKUnYIzTDCUEI3YKxggRngjB0xG4iHGNekiSnoMR5VIQzrIxWCx8aFa-8ktndAULt7UhunYHfQmNro0N0NiqirAJtnCmHRK_rH10EWoTfIyw7TY-wHbX2HgJzkpdRXt1iBPw-fz0MXtN5u8vb7PHeWKoYG2Sp5zmWHNaMIk1kikllBMmWEYwL0sqerAsp1qSUlhGLNKklKURkjEymJ6Ah71u0-UbWxhbt0FXqgluo8NOee3U_0rtVmrpt6pvlkykole4PSgE_9XZ2KqNi4NTXVvfRUWEJAgjKlFPvdtTf-wGWx7nYDQIUjW8QB1e0NNv_u52JP_enH4D_wiEsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892010390</pqid></control><display><type>article</type><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</creator><creatorcontrib>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</creatorcontrib><description>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P &lt; .035) in validation cohorts and further improved prognostication when combined with clinical risk factors. Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</description><identifier>ISSN: 0027-8874</identifier><identifier>ISSN: 1460-2105</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djad243</identifier><identifier>PMID: 37982756</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Carcinoma, Squamous Cell - genetics ; Carcinoma, Squamous Cell - pathology ; Disease Progression ; Editor's Choice ; Eosine Yellowish-(YS) ; Hematoxylin ; Humans ; Prognosis</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2024-04, Vol.116 (4), p.555-564</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</citedby><cites>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</cites><orcidid>0000-0002-0232-5998 ; 0000-0003-3995-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37982756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sali, Rasoul</creatorcontrib><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Attaranzadeh, Armin</creatorcontrib><creatorcontrib>Holmes, Brittany</creatorcontrib><creatorcontrib>Li, Ruijiang</creatorcontrib><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P &lt; .035) in validation cohorts and further improved prognostication when combined with clinical risk factors. Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</description><subject>Carcinoma, Squamous Cell - genetics</subject><subject>Carcinoma, Squamous Cell - pathology</subject><subject>Disease Progression</subject><subject>Editor's Choice</subject><subject>Eosine Yellowish-(YS)</subject><subject>Hematoxylin</subject><subject>Humans</subject><subject>Prognosis</subject><issn>0027-8874</issn><issn>1460-2105</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PwzAQtRCIlsLGjDwyEOqPOLYnhCq-pFYsMFuO47Su0jjYSaX-exJaKnjLnXTv3t27A-Aao3uMJJ2ua-OmxVoXJKUnYIzTDCUEI3YKxggRngjB0xG4iHGNekiSnoMR5VIQzrIxWCx8aFa-8ktndAULt7UhunYHfQmNro0N0NiqirAJtnCmHRK_rH10EWoTfIyw7TY-wHbX2HgJzkpdRXt1iBPw-fz0MXtN5u8vb7PHeWKoYG2Sp5zmWHNaMIk1kikllBMmWEYwL0sqerAsp1qSUlhGLNKklKURkjEymJ6Ah71u0-UbWxhbt0FXqgluo8NOee3U_0rtVmrpt6pvlkykole4PSgE_9XZ2KqNi4NTXVvfRUWEJAgjKlFPvdtTf-wGWx7nYDQIUjW8QB1e0NNv_u52JP_enH4D_wiEsg</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Sali, Rasoul</creator><creator>Jiang, Yuming</creator><creator>Attaranzadeh, Armin</creator><creator>Holmes, Brittany</creator><creator>Li, Ruijiang</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0232-5998</orcidid><orcidid>https://orcid.org/0000-0003-3995-0735</orcidid></search><sort><creationdate>20240405</creationdate><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><author>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carcinoma, Squamous Cell - genetics</topic><topic>Carcinoma, Squamous Cell - pathology</topic><topic>Disease Progression</topic><topic>Editor's Choice</topic><topic>Eosine Yellowish-(YS)</topic><topic>Hematoxylin</topic><topic>Humans</topic><topic>Prognosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sali, Rasoul</creatorcontrib><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Attaranzadeh, Armin</creatorcontrib><creatorcontrib>Holmes, Brittany</creatorcontrib><creatorcontrib>Li, Ruijiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sali, Rasoul</au><au>Jiang, Yuming</au><au>Attaranzadeh, Armin</au><au>Holmes, Brittany</au><au>Li, Ruijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological diversity of cancer cells predicts prognosis across tumor types</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2024-04-05</date><risdate>2024</risdate><volume>116</volume><issue>4</issue><spage>555</spage><epage>564</epage><pages>555-564</pages><issn>0027-8874</issn><issn>1460-2105</issn><eissn>1460-2105</eissn><abstract>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P &lt; .035) in validation cohorts and further improved prognostication when combined with clinical risk factors. Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>37982756</pmid><doi>10.1093/jnci/djad243</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0232-5998</orcidid><orcidid>https://orcid.org/0000-0003-3995-0735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8874
ispartof JNCI : Journal of the National Cancer Institute, 2024-04, Vol.116 (4), p.555-564
issn 0027-8874
1460-2105
1460-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10995848
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Carcinoma, Squamous Cell - genetics
Carcinoma, Squamous Cell - pathology
Disease Progression
Editor's Choice
Eosine Yellowish-(YS)
Hematoxylin
Humans
Prognosis
title Morphological diversity of cancer cells predicts prognosis across tumor types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T12%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20diversity%20of%20cancer%20cells%20predicts%20prognosis%20across%20tumor%20types&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Sali,%20Rasoul&rft.date=2024-04-05&rft.volume=116&rft.issue=4&rft.spage=555&rft.epage=564&rft.pages=555-564&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djad243&rft_dat=%3Cproquest_pubme%3E2892010390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892010390&rft_id=info:pmid/37982756&rfr_iscdi=true