Morphological diversity of cancer cells predicts prognosis across tumor types
Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images. We analyzed publicly available digi...
Gespeichert in:
Veröffentlicht in: | JNCI : Journal of the National Cancer Institute 2024-04, Vol.116 (4), p.555-564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | 4 |
container_start_page | 555 |
container_title | JNCI : Journal of the National Cancer Institute |
container_volume | 116 |
creator | Sali, Rasoul Jiang, Yuming Attaranzadeh, Armin Holmes, Brittany Li, Ruijiang |
description | Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images.
We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis.
A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P |
doi_str_mv | 10.1093/jnci/djad243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10995848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892010390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLGjDwyEOqPOLYnhCq-pFYsMFuO47Su0jjYSaX-exJaKnjLnXTv3t27A-Aao3uMJJ2ua-OmxVoXJKUnYIzTDCUEI3YKxggRngjB0xG4iHGNekiSnoMR5VIQzrIxWCx8aFa-8ktndAULt7UhunYHfQmNro0N0NiqirAJtnCmHRK_rH10EWoTfIyw7TY-wHbX2HgJzkpdRXt1iBPw-fz0MXtN5u8vb7PHeWKoYG2Sp5zmWHNaMIk1kikllBMmWEYwL0sqerAsp1qSUlhGLNKklKURkjEymJ6Ah71u0-UbWxhbt0FXqgluo8NOee3U_0rtVmrpt6pvlkykole4PSgE_9XZ2KqNi4NTXVvfRUWEJAgjKlFPvdtTf-wGWx7nYDQIUjW8QB1e0NNv_u52JP_enH4D_wiEsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892010390</pqid></control><display><type>article</type><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</creator><creatorcontrib>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</creatorcontrib><description>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images.
We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis.
A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P < .035) in validation cohorts and further improved prognostication when combined with clinical risk factors.
Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</description><identifier>ISSN: 0027-8874</identifier><identifier>ISSN: 1460-2105</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djad243</identifier><identifier>PMID: 37982756</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Carcinoma, Squamous Cell - genetics ; Carcinoma, Squamous Cell - pathology ; Disease Progression ; Editor's Choice ; Eosine Yellowish-(YS) ; Hematoxylin ; Humans ; Prognosis</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2024-04, Vol.116 (4), p.555-564</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</citedby><cites>FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</cites><orcidid>0000-0002-0232-5998 ; 0000-0003-3995-0735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37982756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sali, Rasoul</creatorcontrib><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Attaranzadeh, Armin</creatorcontrib><creatorcontrib>Holmes, Brittany</creatorcontrib><creatorcontrib>Li, Ruijiang</creatorcontrib><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images.
We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis.
A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P < .035) in validation cohorts and further improved prognostication when combined with clinical risk factors.
Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</description><subject>Carcinoma, Squamous Cell - genetics</subject><subject>Carcinoma, Squamous Cell - pathology</subject><subject>Disease Progression</subject><subject>Editor's Choice</subject><subject>Eosine Yellowish-(YS)</subject><subject>Hematoxylin</subject><subject>Humans</subject><subject>Prognosis</subject><issn>0027-8874</issn><issn>1460-2105</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PwzAQtRCIlsLGjDwyEOqPOLYnhCq-pFYsMFuO47Su0jjYSaX-exJaKnjLnXTv3t27A-Aao3uMJJ2ua-OmxVoXJKUnYIzTDCUEI3YKxggRngjB0xG4iHGNekiSnoMR5VIQzrIxWCx8aFa-8ktndAULt7UhunYHfQmNro0N0NiqirAJtnCmHRK_rH10EWoTfIyw7TY-wHbX2HgJzkpdRXt1iBPw-fz0MXtN5u8vb7PHeWKoYG2Sp5zmWHNaMIk1kikllBMmWEYwL0sqerAsp1qSUlhGLNKklKURkjEymJ6Ah71u0-UbWxhbt0FXqgluo8NOee3U_0rtVmrpt6pvlkykole4PSgE_9XZ2KqNi4NTXVvfRUWEJAgjKlFPvdtTf-wGWx7nYDQIUjW8QB1e0NNv_u52JP_enH4D_wiEsg</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Sali, Rasoul</creator><creator>Jiang, Yuming</creator><creator>Attaranzadeh, Armin</creator><creator>Holmes, Brittany</creator><creator>Li, Ruijiang</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0232-5998</orcidid><orcidid>https://orcid.org/0000-0003-3995-0735</orcidid></search><sort><creationdate>20240405</creationdate><title>Morphological diversity of cancer cells predicts prognosis across tumor types</title><author>Sali, Rasoul ; Jiang, Yuming ; Attaranzadeh, Armin ; Holmes, Brittany ; Li, Ruijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b473b1a73d591a094323725856217ff3888856b3a92f8e52e0a2f9fc895521093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carcinoma, Squamous Cell - genetics</topic><topic>Carcinoma, Squamous Cell - pathology</topic><topic>Disease Progression</topic><topic>Editor's Choice</topic><topic>Eosine Yellowish-(YS)</topic><topic>Hematoxylin</topic><topic>Humans</topic><topic>Prognosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sali, Rasoul</creatorcontrib><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Attaranzadeh, Armin</creatorcontrib><creatorcontrib>Holmes, Brittany</creatorcontrib><creatorcontrib>Li, Ruijiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sali, Rasoul</au><au>Jiang, Yuming</au><au>Attaranzadeh, Armin</au><au>Holmes, Brittany</au><au>Li, Ruijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological diversity of cancer cells predicts prognosis across tumor types</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2024-04-05</date><risdate>2024</risdate><volume>116</volume><issue>4</issue><spage>555</spage><epage>564</epage><pages>555-564</pages><issn>0027-8874</issn><issn>1460-2105</issn><eissn>1460-2105</eissn><abstract>Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin-stained histopathology images.
We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis.
A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P < .035) in validation cohorts and further improved prognostication when combined with clinical risk factors.
Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>37982756</pmid><doi>10.1093/jnci/djad243</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0232-5998</orcidid><orcidid>https://orcid.org/0000-0003-3995-0735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8874 |
ispartof | JNCI : Journal of the National Cancer Institute, 2024-04, Vol.116 (4), p.555-564 |
issn | 0027-8874 1460-2105 1460-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10995848 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE |
subjects | Carcinoma, Squamous Cell - genetics Carcinoma, Squamous Cell - pathology Disease Progression Editor's Choice Eosine Yellowish-(YS) Hematoxylin Humans Prognosis |
title | Morphological diversity of cancer cells predicts prognosis across tumor types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T12%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20diversity%20of%20cancer%20cells%20predicts%20prognosis%20across%20tumor%20types&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Sali,%20Rasoul&rft.date=2024-04-05&rft.volume=116&rft.issue=4&rft.spage=555&rft.epage=564&rft.pages=555-564&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djad243&rft_dat=%3Cproquest_pubme%3E2892010390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892010390&rft_id=info:pmid/37982756&rfr_iscdi=true |