Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity

Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly­(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2019-08, Vol.58 (31), p.13910-13917
Hauptverfasser: Zeng, Jialiu, Martin, Andrew, Han, Xue, Shirihai, Orian S, Grinstaff, Mark W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13917
container_issue 31
container_start_page 13910
container_title Industrial & engineering chemistry research
container_volume 58
creator Zeng, Jialiu
Martin, Andrew
Han, Xue
Shirihai, Orian S
Grinstaff, Mark W
description Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly­(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.
doi_str_mv 10.1021/acs.iecr.9b02003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10993316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034241215</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-3cd2298bfebdf3ffc9c40b68635ebe7dcc7db6656f9c48775c82220d6e368a853</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi1ERUPhzgn5yIFN_bH2ek8ojaAgpSVC5Wx57dnU1WYdbC9q_j2OEio49OTD-zHjeRB6R8mcEkYvjU1zDzbO244wQvgLNKOCkUqQWrxEM6KUqoRS4hy9TumBECJEXb9C51yJRjZNPUOPVz442ETjTDcAXq-uF_jWjGFnYvZ2gIR_QMohAl7tU0hhawa8sN75vMdmdHgdQwab8S1MsUjrZUUZXsIwJGw2xo8p4xufg70Po4u-OO7Co7cl_Qad9WZI8Pb0XqCfXz7fLb9Wq-_X35aLVWVq1uaKW8dYq7oeOtfzvretrUknleQCOmictY3rpBSyL4JqGmEVY4w4CVwqowS_QJ-Ovbup24KzMOayqN5FvzVxr4Px-n9l9Pd6E35rStqWcypLw4dTQwy_pnINvfXJli-aEcKUNCe8ZjVl9DCMHK02hpQi9E9zKNEHYroQ0wdi-kSsRN7_u99T4C-iYvh4NByiD2GKYznX831_AA-3pPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034241215</pqid></control><display><type>article</type><title>Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity</title><source>American Chemical Society Journals</source><creator>Zeng, Jialiu ; Martin, Andrew ; Han, Xue ; Shirihai, Orian S ; Grinstaff, Mark W</creator><creatorcontrib>Zeng, Jialiu ; Martin, Andrew ; Han, Xue ; Shirihai, Orian S ; Grinstaff, Mark W</creatorcontrib><description>Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly­(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.9b02003</identifier><identifier>PMID: 38576774</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2019-08, Vol.58 (31), p.13910-13917</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-3cd2298bfebdf3ffc9c40b68635ebe7dcc7db6656f9c48775c82220d6e368a853</citedby><cites>FETCH-LOGICAL-a429t-3cd2298bfebdf3ffc9c40b68635ebe7dcc7db6656f9c48775c82220d6e368a853</cites><orcidid>0000-0002-5453-3668 ; 0000-0001-7802-1432 ; 0000-0003-3896-4609 ; 0000-0002-7512-5049 ; 0000-0002-9502-2661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.9b02003$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.9b02003$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38576774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Jialiu</creatorcontrib><creatorcontrib>Martin, Andrew</creatorcontrib><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Shirihai, Orian S</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><title>Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly­(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhi1ERUPhzgn5yIFN_bH2ek8ojaAgpSVC5Wx57dnU1WYdbC9q_j2OEio49OTD-zHjeRB6R8mcEkYvjU1zDzbO244wQvgLNKOCkUqQWrxEM6KUqoRS4hy9TumBECJEXb9C51yJRjZNPUOPVz442ETjTDcAXq-uF_jWjGFnYvZ2gIR_QMohAl7tU0hhawa8sN75vMdmdHgdQwab8S1MsUjrZUUZXsIwJGw2xo8p4xufg70Po4u-OO7Co7cl_Qad9WZI8Pb0XqCfXz7fLb9Wq-_X35aLVWVq1uaKW8dYq7oeOtfzvretrUknleQCOmictY3rpBSyL4JqGmEVY4w4CVwqowS_QJ-Ovbup24KzMOayqN5FvzVxr4Px-n9l9Pd6E35rStqWcypLw4dTQwy_pnINvfXJli-aEcKUNCe8ZjVl9DCMHK02hpQi9E9zKNEHYroQ0wdi-kSsRN7_u99T4C-iYvh4NByiD2GKYznX831_AA-3pPU</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>Zeng, Jialiu</creator><creator>Martin, Andrew</creator><creator>Han, Xue</creator><creator>Shirihai, Orian S</creator><creator>Grinstaff, Mark W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5453-3668</orcidid><orcidid>https://orcid.org/0000-0001-7802-1432</orcidid><orcidid>https://orcid.org/0000-0003-3896-4609</orcidid><orcidid>https://orcid.org/0000-0002-7512-5049</orcidid><orcidid>https://orcid.org/0000-0002-9502-2661</orcidid></search><sort><creationdate>20190807</creationdate><title>Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity</title><author>Zeng, Jialiu ; Martin, Andrew ; Han, Xue ; Shirihai, Orian S ; Grinstaff, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-3cd2298bfebdf3ffc9c40b68635ebe7dcc7db6656f9c48775c82220d6e368a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Jialiu</creatorcontrib><creatorcontrib>Martin, Andrew</creatorcontrib><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Shirihai, Orian S</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Jialiu</au><au>Martin, Andrew</au><au>Han, Xue</au><au>Shirihai, Orian S</au><au>Grinstaff, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-08-07</date><risdate>2019</risdate><volume>58</volume><issue>31</issue><spage>13910</spage><epage>13917</epage><pages>13910-13917</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly­(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38576774</pmid><doi>10.1021/acs.iecr.9b02003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5453-3668</orcidid><orcidid>https://orcid.org/0000-0001-7802-1432</orcidid><orcidid>https://orcid.org/0000-0003-3896-4609</orcidid><orcidid>https://orcid.org/0000-0002-7512-5049</orcidid><orcidid>https://orcid.org/0000-0002-9502-2661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2019-08, Vol.58 (31), p.13910-13917
issn 0888-5885
1520-5045
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10993316
source American Chemical Society Journals
title Biodegradable PLGA Nanoparticles Restore Lysosomal Acidity and Protect Neural PC-12 Cells against Mitochondrial Toxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20PLGA%20Nanoparticles%20Restore%20Lysosomal%20Acidity%20and%20Protect%20Neural%20PC-12%20Cells%20against%20Mitochondrial%20Toxicity&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Zeng,%20Jialiu&rft.date=2019-08-07&rft.volume=58&rft.issue=31&rft.spage=13910&rft.epage=13917&rft.pages=13910-13917&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.9b02003&rft_dat=%3Cproquest_pubme%3E3034241215%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034241215&rft_id=info:pmid/38576774&rfr_iscdi=true