Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect

Salmonella -based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Immunology, Immunotherapy Immunotherapy, 2022-09, Vol.71 (9), p.2141-2150
Hauptverfasser: Mónaco, Amy, Chilibroste, Sofía, Yim, Lucía, Chabalgoity, Jose Alejandro, Moreno, María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2150
container_issue 9
container_start_page 2141
container_title Cancer Immunology, Immunotherapy
container_volume 71
creator Mónaco, Amy
Chilibroste, Sofía
Yim, Lucía
Chabalgoity, Jose Alejandro
Moreno, María
description Salmonella -based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 ( Casp11 ) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella , suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 ( Casp1/11 ) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella -based cancer immunotherapy and suggest a possible target for future interventions.
doi_str_mv 10.1007/s00262-022-03148-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622274396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f125c806263e862dc2de6a02eb1b58b422a954a7d24d1f5caa455553c309b2703</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi1ERIbAC3BALXHhQAdvvZ0QigKJNALEcrbc7uqJo7Y9sd2j5Cl4ZWrSSVgOWLK81Fe_q_wT8oLRY0Zp8zZRymteUo5TMNmW14_IikmBx7Zij8mKCknLhlJ5SJ6mdIkbTrvuCTkUFa0ZQivy89yPk3ZOp-Cg0Cbbnc42-DfFp_XXL6IAv9EbcOBzof1QOG1i2F7gVRHBxNnm21AORZ5diIWzGAe_szH4JSmi6jQhfTXbCEMxIvVNTy54mCaNotkuqTCOYPIzcjDqKcHzu_WI_Phw-v3krFx__nh-8n5dGilYLkfGK9PSmtcC2poPhg9Qa8qhZ33V9pJz3VVSNwOXAxsro7WscAgjaNfzhooj8m7R3c69g8FgrVFPahut0_FGBW3V3xFvL9Qm7BTDH-Rtt1d4facQw9UMKStnk9k35SHMSaE1nDdSdDWir_5BL8McPfansBYmOOuaPcUXCr8wpQjjQzWMqr3hajFcoeHq1nB1jUkv_-zjIeXeYQTEAiQM-Q3E32__R_YXwFe6Gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701321976</pqid></control><display><type>article</type><title>Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Mónaco, Amy ; Chilibroste, Sofía ; Yim, Lucía ; Chabalgoity, Jose Alejandro ; Moreno, María</creator><creatorcontrib>Mónaco, Amy ; Chilibroste, Sofía ; Yim, Lucía ; Chabalgoity, Jose Alejandro ; Moreno, María</creatorcontrib><description>Salmonella -based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 ( Casp11 ) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella , suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 ( Casp1/11 ) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella -based cancer immunotherapy and suggest a possible target for future interventions.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-022-03148-x</identifier><identifier>PMID: 35061085</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Antitumor activity ; Calreticulin ; Cancer immunotherapy ; Cancer Research ; Caspase 1 - metabolism ; Caspase-1 ; Caspase-11 ; Cell activation ; Cell death ; Cell surface ; Growth rate ; High mobility group proteins ; IL-1β ; Immunogenicity ; Immunology ; Immunotherapy ; Inflammasomes ; Inflammasomes - immunology ; Inflammation ; Interleukin-1beta - metabolism ; Macrophages ; Macrophages - immunology ; Medicine ; Medicine &amp; Public Health ; Melanoma ; Mice ; Mice, Inbred C57BL ; mRNA ; Neoplasms - immunology ; Neoplasms - therapy ; NLR Family, Pyrin Domain-Containing 3 Protein - genetics ; Oncology ; Original ; Original Article ; Pyroptosis ; RNA, Messenger - metabolism ; Salmonella ; Tumor Microenvironment ; Tumor-infiltrating lymphocytes</subject><ispartof>Cancer Immunology, Immunotherapy, 2022-09, Vol.71 (9), p.2141-2150</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f125c806263e862dc2de6a02eb1b58b422a954a7d24d1f5caa455553c309b2703</citedby><cites>FETCH-LOGICAL-c431t-f125c806263e862dc2de6a02eb1b58b422a954a7d24d1f5caa455553c309b2703</cites><orcidid>0000-0002-1759-228X ; 0000-0002-6006-0713 ; 0000-0002-5548-698X ; 0000-0002-7294-6693 ; 0000-0002-2052-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992890/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992890/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35061085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mónaco, Amy</creatorcontrib><creatorcontrib>Chilibroste, Sofía</creatorcontrib><creatorcontrib>Yim, Lucía</creatorcontrib><creatorcontrib>Chabalgoity, Jose Alejandro</creatorcontrib><creatorcontrib>Moreno, María</creatorcontrib><title>Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Salmonella -based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 ( Casp11 ) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella , suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 ( Casp1/11 ) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella -based cancer immunotherapy and suggest a possible target for future interventions.</description><subject>Animals</subject><subject>Antitumor activity</subject><subject>Calreticulin</subject><subject>Cancer immunotherapy</subject><subject>Cancer Research</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Caspase-11</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cell surface</subject><subject>Growth rate</subject><subject>High mobility group proteins</subject><subject>IL-1β</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Inflammasomes</subject><subject>Inflammasomes - immunology</subject><subject>Inflammation</subject><subject>Interleukin-1beta - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Melanoma</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mRNA</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Pyroptosis</subject><subject>RNA, Messenger - metabolism</subject><subject>Salmonella</subject><subject>Tumor Microenvironment</subject><subject>Tumor-infiltrating lymphocytes</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcluFDEQhi1ERIbAC3BALXHhQAdvvZ0QigKJNALEcrbc7uqJo7Y9sd2j5Cl4ZWrSSVgOWLK81Fe_q_wT8oLRY0Zp8zZRymteUo5TMNmW14_IikmBx7Zij8mKCknLhlJ5SJ6mdIkbTrvuCTkUFa0ZQivy89yPk3ZOp-Cg0Cbbnc42-DfFp_XXL6IAv9EbcOBzof1QOG1i2F7gVRHBxNnm21AORZ5diIWzGAe_szH4JSmi6jQhfTXbCEMxIvVNTy54mCaNotkuqTCOYPIzcjDqKcHzu_WI_Phw-v3krFx__nh-8n5dGilYLkfGK9PSmtcC2poPhg9Qa8qhZ33V9pJz3VVSNwOXAxsro7WscAgjaNfzhooj8m7R3c69g8FgrVFPahut0_FGBW3V3xFvL9Qm7BTDH-Rtt1d4facQw9UMKStnk9k35SHMSaE1nDdSdDWir_5BL8McPfansBYmOOuaPcUXCr8wpQjjQzWMqr3hajFcoeHq1nB1jUkv_-zjIeXeYQTEAiQM-Q3E32__R_YXwFe6Gg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mónaco, Amy</creator><creator>Chilibroste, Sofía</creator><creator>Yim, Lucía</creator><creator>Chabalgoity, Jose Alejandro</creator><creator>Moreno, María</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1759-228X</orcidid><orcidid>https://orcid.org/0000-0002-6006-0713</orcidid><orcidid>https://orcid.org/0000-0002-5548-698X</orcidid><orcidid>https://orcid.org/0000-0002-7294-6693</orcidid><orcidid>https://orcid.org/0000-0002-2052-4114</orcidid></search><sort><creationdate>20220901</creationdate><title>Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect</title><author>Mónaco, Amy ; Chilibroste, Sofía ; Yim, Lucía ; Chabalgoity, Jose Alejandro ; Moreno, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f125c806263e862dc2de6a02eb1b58b422a954a7d24d1f5caa455553c309b2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antitumor activity</topic><topic>Calreticulin</topic><topic>Cancer immunotherapy</topic><topic>Cancer Research</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Caspase-11</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cell surface</topic><topic>Growth rate</topic><topic>High mobility group proteins</topic><topic>IL-1β</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Inflammasomes</topic><topic>Inflammasomes - immunology</topic><topic>Inflammation</topic><topic>Interleukin-1beta - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Melanoma</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mRNA</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Pyroptosis</topic><topic>RNA, Messenger - metabolism</topic><topic>Salmonella</topic><topic>Tumor Microenvironment</topic><topic>Tumor-infiltrating lymphocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mónaco, Amy</creatorcontrib><creatorcontrib>Chilibroste, Sofía</creatorcontrib><creatorcontrib>Yim, Lucía</creatorcontrib><creatorcontrib>Chabalgoity, Jose Alejandro</creatorcontrib><creatorcontrib>Moreno, María</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mónaco, Amy</au><au>Chilibroste, Sofía</au><au>Yim, Lucía</au><au>Chabalgoity, Jose Alejandro</au><au>Moreno, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>71</volume><issue>9</issue><spage>2141</spage><epage>2150</epage><pages>2141-2150</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Salmonella -based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 ( Casp11 ) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella , suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 ( Casp1/11 ) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella -based cancer immunotherapy and suggest a possible target for future interventions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35061085</pmid><doi>10.1007/s00262-022-03148-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1759-228X</orcidid><orcidid>https://orcid.org/0000-0002-6006-0713</orcidid><orcidid>https://orcid.org/0000-0002-5548-698X</orcidid><orcidid>https://orcid.org/0000-0002-7294-6693</orcidid><orcidid>https://orcid.org/0000-0002-2052-4114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-7004
ispartof Cancer Immunology, Immunotherapy, 2022-09, Vol.71 (9), p.2141-2150
issn 0340-7004
1432-0851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992890
source MEDLINE; SpringerNature Journals; PubMed Central
subjects Animals
Antitumor activity
Calreticulin
Cancer immunotherapy
Cancer Research
Caspase 1 - metabolism
Caspase-1
Caspase-11
Cell activation
Cell death
Cell surface
Growth rate
High mobility group proteins
IL-1β
Immunogenicity
Immunology
Immunotherapy
Inflammasomes
Inflammasomes - immunology
Inflammation
Interleukin-1beta - metabolism
Macrophages
Macrophages - immunology
Medicine
Medicine & Public Health
Melanoma
Mice
Mice, Inbred C57BL
mRNA
Neoplasms - immunology
Neoplasms - therapy
NLR Family, Pyrin Domain-Containing 3 Protein - genetics
Oncology
Original
Original Article
Pyroptosis
RNA, Messenger - metabolism
Salmonella
Tumor Microenvironment
Tumor-infiltrating lymphocytes
title Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammasome%20activation,%20NLRP3%20engagement%20and%20macrophage%20recruitment%20to%20tumor%20microenvironment%20are%20all%20required%20for%20Salmonella%20antitumor%20effect&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=M%C3%B3naco,%20Amy&rft.date=2022-09-01&rft.volume=71&rft.issue=9&rft.spage=2141&rft.epage=2150&rft.pages=2141-2150&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-022-03148-x&rft_dat=%3Cproquest_pubme%3E2622274396%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701321976&rft_id=info:pmid/35061085&rfr_iscdi=true