Epigenomic tomography for probing spatially defined chromatin state in the brain

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports methods 2024-03, Vol.4 (3), p.100738-100738, Article 100738
Hauptverfasser: Liu, Zhengzhi, Deng, Chengyu, Zhou, Zirui, Xiao, Ya, Jiang, Shan, Zhu, Bohan, Naler, Lynette B., Jia, Xiaoting, Yao, Danfeng (Daphne), Lu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100738
container_issue 3
container_start_page 100738
container_title Cell reports methods
container_volume 4
creator Liu, Zhengzhi
Deng, Chengyu
Zhou, Zirui
Xiao, Ya
Jiang, Shan
Zhu, Bohan
Naler, Lynette B.
Jia, Xiaoting
Yao, Danfeng (Daphne)
Lu, Chang
description Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome. [Display omitted] •Mapping the spatial epigenome of brain using dissection and a low-input assay•Using k-means clustering to group peaks based on their patterns of spatial variation•Creating dual epigenomic tomography to compare brain samples•Detecting variation in mouse frontal cortex due to seizure Recent progress on spatial epigenomic profiling has been centered around single-cell assays. They offer extremely high spatial resolution and generate important insights on the microenvironment and cell-cell communications. These assays are powerful for capturing spatial dynamics in mammalian brains. Despite their advantages, single-cell spatial epigenomic assays are costly and laborious. Comparison of brain samples using these single-cell datasets requires complicated bioinformatic pipelines that are prone to errors and artifacts. Here, we develop a simple and cost-effective approach, referred to as epigenomic tomography, to map spatial brain epigenomes using a low-input epigenomic assay. Liu et al. develop an approach, referred to as epigenomic tomography, to map the spatial epigenome of mouse brain at a span of 1 cm with a resolution of 0.5 mm. As a proof of principle, epigenomic tomography data reveal striking changes in the frontal cortex due to kainic-acid-induced seizure.
doi_str_mv 10.1016/j.crmeth.2024.100738
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10985265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667237524000638</els_id><sourcerecordid>2973105751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-98815bd898bbb96b3ce8392d754f84b11de8460918a5261425fd54b475a376233</originalsourceid><addsrcrecordid>eNp9UctqHDEQFCEhNmv_gQlzzGU3es5oLgnBOA8wxIf4LPTo2dEyI00krWH_3jLjGOeSUzfd1VVNFUJXBO8IJu2nw86mGcq4o5jyOsIdk2_QOW3bbktZJ96-6s_QZc4HjDEVhLGevEdnTAosiZTn6O5m8XsIcfa2KXGO-6SX8dQMMTVLisaHfZMXXbyeplPjYPABXGPHFOc6DE0uukBTmzJCY5L24QK9G_SU4fK5btD9t5vf1z-2t7--_7z-eru1nLCy7aUkwjjZS2NM3xpmQbKeuk7wQXJDiAPJW9wTqQVtCadicIIb3gnNupYytkFfVt7laGZwFkJJelJL8rNOJxW1V_9ugh_VPj4ogntZKUVl-PjMkOKfI-SiZp8tTJMOEI9Z0b5jBIuuurZBfIXaFHNOMLzoEKyeAlEHtQaingJRayD17MPrH1-O_tpfAZ9XAFSnHjwkla2HYMH5BLYoF_3_FR4BR_KenQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973105751</pqid></control><display><type>article</type><title>Epigenomic tomography for probing spatially defined chromatin state in the brain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Zhengzhi ; Deng, Chengyu ; Zhou, Zirui ; Xiao, Ya ; Jiang, Shan ; Zhu, Bohan ; Naler, Lynette B. ; Jia, Xiaoting ; Yao, Danfeng (Daphne) ; Lu, Chang</creator><creatorcontrib>Liu, Zhengzhi ; Deng, Chengyu ; Zhou, Zirui ; Xiao, Ya ; Jiang, Shan ; Zhu, Bohan ; Naler, Lynette B. ; Jia, Xiaoting ; Yao, Danfeng (Daphne) ; Lu, Chang</creatorcontrib><description>Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome. [Display omitted] •Mapping the spatial epigenome of brain using dissection and a low-input assay•Using k-means clustering to group peaks based on their patterns of spatial variation•Creating dual epigenomic tomography to compare brain samples•Detecting variation in mouse frontal cortex due to seizure Recent progress on spatial epigenomic profiling has been centered around single-cell assays. They offer extremely high spatial resolution and generate important insights on the microenvironment and cell-cell communications. These assays are powerful for capturing spatial dynamics in mammalian brains. Despite their advantages, single-cell spatial epigenomic assays are costly and laborious. Comparison of brain samples using these single-cell datasets requires complicated bioinformatic pipelines that are prone to errors and artifacts. Here, we develop a simple and cost-effective approach, referred to as epigenomic tomography, to map spatial brain epigenomes using a low-input epigenomic assay. Liu et al. develop an approach, referred to as epigenomic tomography, to map the spatial epigenome of mouse brain at a span of 1 cm with a resolution of 0.5 mm. As a proof of principle, epigenomic tomography data reveal striking changes in the frontal cortex due to kainic-acid-induced seizure.</description><identifier>ISSN: 2667-2375</identifier><identifier>EISSN: 2667-2375</identifier><identifier>DOI: 10.1016/j.crmeth.2024.100738</identifier><identifier>PMID: 38508188</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>chromatin immunoprecipitation ; clustering ; epigenomic tomography ; gene ontology ; histone modification ; neocortex ; seizure ; spatial epigenome</subject><ispartof>Cell reports methods, 2024-03, Vol.4 (3), p.100738-100738, Article 100738</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-98815bd898bbb96b3ce8392d754f84b11de8460918a5261425fd54b475a376233</cites><orcidid>0000-0003-0181-5888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38508188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhengzhi</creatorcontrib><creatorcontrib>Deng, Chengyu</creatorcontrib><creatorcontrib>Zhou, Zirui</creatorcontrib><creatorcontrib>Xiao, Ya</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Zhu, Bohan</creatorcontrib><creatorcontrib>Naler, Lynette B.</creatorcontrib><creatorcontrib>Jia, Xiaoting</creatorcontrib><creatorcontrib>Yao, Danfeng (Daphne)</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><title>Epigenomic tomography for probing spatially defined chromatin state in the brain</title><title>Cell reports methods</title><addtitle>Cell Rep Methods</addtitle><description>Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome. [Display omitted] •Mapping the spatial epigenome of brain using dissection and a low-input assay•Using k-means clustering to group peaks based on their patterns of spatial variation•Creating dual epigenomic tomography to compare brain samples•Detecting variation in mouse frontal cortex due to seizure Recent progress on spatial epigenomic profiling has been centered around single-cell assays. They offer extremely high spatial resolution and generate important insights on the microenvironment and cell-cell communications. These assays are powerful for capturing spatial dynamics in mammalian brains. Despite their advantages, single-cell spatial epigenomic assays are costly and laborious. Comparison of brain samples using these single-cell datasets requires complicated bioinformatic pipelines that are prone to errors and artifacts. Here, we develop a simple and cost-effective approach, referred to as epigenomic tomography, to map spatial brain epigenomes using a low-input epigenomic assay. Liu et al. develop an approach, referred to as epigenomic tomography, to map the spatial epigenome of mouse brain at a span of 1 cm with a resolution of 0.5 mm. As a proof of principle, epigenomic tomography data reveal striking changes in the frontal cortex due to kainic-acid-induced seizure.</description><subject>chromatin immunoprecipitation</subject><subject>clustering</subject><subject>epigenomic tomography</subject><subject>gene ontology</subject><subject>histone modification</subject><subject>neocortex</subject><subject>seizure</subject><subject>spatial epigenome</subject><issn>2667-2375</issn><issn>2667-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctqHDEQFCEhNmv_gQlzzGU3es5oLgnBOA8wxIf4LPTo2dEyI00krWH_3jLjGOeSUzfd1VVNFUJXBO8IJu2nw86mGcq4o5jyOsIdk2_QOW3bbktZJ96-6s_QZc4HjDEVhLGevEdnTAosiZTn6O5m8XsIcfa2KXGO-6SX8dQMMTVLisaHfZMXXbyeplPjYPABXGPHFOc6DE0uukBTmzJCY5L24QK9G_SU4fK5btD9t5vf1z-2t7--_7z-eru1nLCy7aUkwjjZS2NM3xpmQbKeuk7wQXJDiAPJW9wTqQVtCadicIIb3gnNupYytkFfVt7laGZwFkJJelJL8rNOJxW1V_9ugh_VPj4ogntZKUVl-PjMkOKfI-SiZp8tTJMOEI9Z0b5jBIuuurZBfIXaFHNOMLzoEKyeAlEHtQaingJRayD17MPrH1-O_tpfAZ9XAFSnHjwkla2HYMH5BLYoF_3_FR4BR_KenQ</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Liu, Zhengzhi</creator><creator>Deng, Chengyu</creator><creator>Zhou, Zirui</creator><creator>Xiao, Ya</creator><creator>Jiang, Shan</creator><creator>Zhu, Bohan</creator><creator>Naler, Lynette B.</creator><creator>Jia, Xiaoting</creator><creator>Yao, Danfeng (Daphne)</creator><creator>Lu, Chang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0181-5888</orcidid></search><sort><creationdate>20240325</creationdate><title>Epigenomic tomography for probing spatially defined chromatin state in the brain</title><author>Liu, Zhengzhi ; Deng, Chengyu ; Zhou, Zirui ; Xiao, Ya ; Jiang, Shan ; Zhu, Bohan ; Naler, Lynette B. ; Jia, Xiaoting ; Yao, Danfeng (Daphne) ; Lu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-98815bd898bbb96b3ce8392d754f84b11de8460918a5261425fd54b475a376233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chromatin immunoprecipitation</topic><topic>clustering</topic><topic>epigenomic tomography</topic><topic>gene ontology</topic><topic>histone modification</topic><topic>neocortex</topic><topic>seizure</topic><topic>spatial epigenome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhengzhi</creatorcontrib><creatorcontrib>Deng, Chengyu</creatorcontrib><creatorcontrib>Zhou, Zirui</creatorcontrib><creatorcontrib>Xiao, Ya</creatorcontrib><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Zhu, Bohan</creatorcontrib><creatorcontrib>Naler, Lynette B.</creatorcontrib><creatorcontrib>Jia, Xiaoting</creatorcontrib><creatorcontrib>Yao, Danfeng (Daphne)</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhengzhi</au><au>Deng, Chengyu</au><au>Zhou, Zirui</au><au>Xiao, Ya</au><au>Jiang, Shan</au><au>Zhu, Bohan</au><au>Naler, Lynette B.</au><au>Jia, Xiaoting</au><au>Yao, Danfeng (Daphne)</au><au>Lu, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenomic tomography for probing spatially defined chromatin state in the brain</atitle><jtitle>Cell reports methods</jtitle><addtitle>Cell Rep Methods</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>4</volume><issue>3</issue><spage>100738</spage><epage>100738</epage><pages>100738-100738</pages><artnum>100738</artnum><issn>2667-2375</issn><eissn>2667-2375</eissn><abstract>Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome. [Display omitted] •Mapping the spatial epigenome of brain using dissection and a low-input assay•Using k-means clustering to group peaks based on their patterns of spatial variation•Creating dual epigenomic tomography to compare brain samples•Detecting variation in mouse frontal cortex due to seizure Recent progress on spatial epigenomic profiling has been centered around single-cell assays. They offer extremely high spatial resolution and generate important insights on the microenvironment and cell-cell communications. These assays are powerful for capturing spatial dynamics in mammalian brains. Despite their advantages, single-cell spatial epigenomic assays are costly and laborious. Comparison of brain samples using these single-cell datasets requires complicated bioinformatic pipelines that are prone to errors and artifacts. Here, we develop a simple and cost-effective approach, referred to as epigenomic tomography, to map spatial brain epigenomes using a low-input epigenomic assay. Liu et al. develop an approach, referred to as epigenomic tomography, to map the spatial epigenome of mouse brain at a span of 1 cm with a resolution of 0.5 mm. As a proof of principle, epigenomic tomography data reveal striking changes in the frontal cortex due to kainic-acid-induced seizure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38508188</pmid><doi>10.1016/j.crmeth.2024.100738</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0181-5888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-2375
ispartof Cell reports methods, 2024-03, Vol.4 (3), p.100738-100738, Article 100738
issn 2667-2375
2667-2375
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10985265
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects chromatin immunoprecipitation
clustering
epigenomic tomography
gene ontology
histone modification
neocortex
seizure
spatial epigenome
title Epigenomic tomography for probing spatially defined chromatin state in the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenomic%20tomography%20for%20probing%20spatially%20defined%20chromatin%20state%20in%20the%20brain&rft.jtitle=Cell%20reports%20methods&rft.au=Liu,%20Zhengzhi&rft.date=2024-03-25&rft.volume=4&rft.issue=3&rft.spage=100738&rft.epage=100738&rft.pages=100738-100738&rft.artnum=100738&rft.issn=2667-2375&rft.eissn=2667-2375&rft_id=info:doi/10.1016/j.crmeth.2024.100738&rft_dat=%3Cproquest_pubme%3E2973105751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973105751&rft_id=info:pmid/38508188&rft_els_id=S2667237524000638&rfr_iscdi=true