Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study

Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet. Digital health 2024-04, Vol.6 (4), p.e238-e250
Hauptverfasser: Montgomery-Csobán, Tünde, Kavanagh, Kimberley, Murray, Paul, Robertson, Chris, Barry, Sarah J E, Vivian Ukah, U, Payne, Beth A, Nicolaides, Kypros H, Syngelaki, Argyro, Ionescu, Olivia, Akolekar, Ranjit, Hutcheon, Jennifer A, Magee, Laura A, Brown, Mark A., Davis, Gregory K., Parker, Claire, Sass, Nelson, Ansermino, J. Mark, Cao, Vivien, Cundiff, Geoffrey W., von Dadelszen, Emma C.M., Douglas, M. Joanne, Dumont, Guy A., Dunsmuir, Dustin T., Hutcheon, Jennifer A., Joseph, K.S., Lalji, Sayrin, Lee, Tang, Li, Jing, Lisonkova, Sarka, Lott, Paula, Menzies, Jennifer M., Millman, Alexandra L., Palmer, Lynne, Payne, Beth A., Qu, Ziguang, Russell, James A., Sawchuck, Diane, Shaw, Dorothy, Still, D. Keith, Ukah, U. Vivian, Wagner, Brenda, Walley, Keith R., Hugo, Dany, Gruslin, The late Andrée, Tawagi, George, Smith, Graeme N., Côté, Anne-Marie, Moutquin, Jean-Marie, Ouellet, Annie B., Lee, Shoo K., Duan, Tao, Zhou, Jian, Haniff, The late Farizah, Mahajan, Swati, Noovao, Amanda, Karjalainend, Hanna, Kortelainen, Alja, Laivuori, Hannele, Ganzevoort, J. Wessel, Groen, Henk, Kyle, Phillipa M., Pullar, Barbra, Bhutta, Zulfiqar A., Qureshi, Rahat N., Sikandar, Rozina, Bhutta, The late Shereen Z., Cloete, Garth, Hall, David R., van Papendorp, The late Erika, Steyn, D. Wilhelm, Biryabarema, Christine, Mirembe, Florence, Nakimuli, Annettee, Allotey, John, Nicolaides, Kypros H., de Swiet, Michael, Magee, Laura A., von Dadelszen, Peter, Walker, James J., Robson, Stephen C., Broughton-Pipkin, Fiona, Loughna, Pamela, Vatish, Manu, Redman, Christopher W.G., Barry, Sarah J.E., Montgomery-Csobán, Tunde, Tsigas, Eleni Z., Woelkers, Douglas A., Lindheimer, Marshall D., Grobman, William A., Sibai, Baha M., Merialdi, Mario, Widmer, Mariana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e250
container_issue 4
container_start_page e238
container_title The Lancet. Digital health
container_volume 6
creator Montgomery-Csobán, Tünde
Kavanagh, Kimberley
Murray, Paul
Robertson, Chris
Barry, Sarah J E
Vivian Ukah, U
Payne, Beth A
Nicolaides, Kypros H
Syngelaki, Argyro
Ionescu, Olivia
Akolekar, Ranjit
Hutcheon, Jennifer A
Magee, Laura A
Brown, Mark A.
Davis, Gregory K.
Parker, Claire
Sass, Nelson
Ansermino, J. Mark
Cao, Vivien
Cundiff, Geoffrey W.
von Dadelszen, Emma C.M.
Douglas, M. Joanne
Dumont, Guy A.
Dunsmuir, Dustin T.
Hutcheon, Jennifer A.
Joseph, K.S.
Lalji, Sayrin
Lee, Tang
Li, Jing
Lisonkova, Sarka
Lott, Paula
Menzies, Jennifer M.
Millman, Alexandra L.
Palmer, Lynne
Payne, Beth A.
Qu, Ziguang
Russell, James A.
Sawchuck, Diane
Shaw, Dorothy
Still, D. Keith
Ukah, U. Vivian
Wagner, Brenda
Walley, Keith R.
Hugo, Dany
Gruslin, The late Andrée
Tawagi, George
Smith, Graeme N.
Côté, Anne-Marie
Moutquin, Jean-Marie
Ouellet, Annie B.
Lee, Shoo K.
Duan, Tao
Zhou, Jian
Haniff, The late Farizah
Mahajan, Swati
Noovao, Amanda
Karjalainend, Hanna
Kortelainen, Alja
Laivuori, Hannele
Ganzevoort, J. Wessel
Groen, Henk
Kyle, Phillipa M.
Pullar, Barbra
Bhutta, Zulfiqar A.
Qureshi, Rahat N.
Sikandar, Rozina
Bhutta, The late Shereen Z.
Cloete, Garth
Hall, David R.
van Papendorp, The late Erika
Steyn, D. Wilhelm
Biryabarema, Christine
Mirembe, Florence
Nakimuli, Annettee
Allotey, John
Nicolaides, Kypros H.
Ionescu, Olivia
Syngelaki, Argyro
de Swiet, Michael
Magee, Laura A.
von Dadelszen, Peter
Akolekar, Ranjit
Walker, James J.
Robson, Stephen C.
Broughton-Pipkin, Fiona
Loughna, Pamela
Vatish, Manu
Redman, Christopher W.G.
Barry, Sarah J.E.
Kavanagh, Kimberley
Montgomery-Csobán, Tunde
Murray, Paul
Robertson, Chris
Tsigas, Eleni Z.
Woelkers, Douglas A.
Lindheimer, Marshall D.
Grobman, William A.
Sibai, Baha M.
Merialdi, Mario
Widmer, Mariana
description Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia. We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios. Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR 0·2 and +LR 10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%). The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers. University of Strathclyde Diversity in Data Linkage C
doi_str_mv 10.1016/S2589-7500(23)00267-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589750023002674</els_id><sourcerecordid>2974004847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBCIRCGfAPJxcxji58yYC0JRIJE2AhE4W370ZA0z9mLPbpS_x8mGJZw4ueSurq7uQug1JW8poe3pNZO9ajpJyILxE0JY2zXiGTrcfz9_gg_QcSk_SGUxyruue4kOeC-popIdou2VcasQAY9gcgzxpoFo7AgeT2aGHM2Icyg_sSkFSpkgznhIGd-mCvFtmFd4naEBN5ppXYLBi3kF-Mvl-dfr5mqJp-RhPHmHzQ6NVR-XeePvXqEXgxkLHD--R-j7x_NvZxfN8vOny7MPy8YJ2s4NUwKGVhJloXOKeu5UJ5gQivWW99wOtBdWKuOkc9R66dhAnVfM1kprheJH6P1Od72xE3hX_Wcz6nUOk8l3Opmg_63EsNI3aaspUT3vWVsVFo8KOf3aQJn1FIqru5gIaVM0q44IEb3oKlXuqC6nUjIM-zmU6Pvc9ENu-j4Uzbh-yE2L2vfmqcl915-U_m4B9VTbAFkXFyA68CGDm7VP4T8jfgNUoKk_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974004847</pqid></control><display><type>article</type><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana</creator><creatorcontrib>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana ; PIERS Consortium</creatorcontrib><description>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia. We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios. Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR &lt;0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR &gt;0·2 and +LR &lt;5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR &gt;10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%). The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers. University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill &amp; Melinda Gates Foundation.</description><identifier>ISSN: 2589-7500</identifier><identifier>EISSN: 2589-7500</identifier><identifier>DOI: 10.1016/S2589-7500(23)00267-4</identifier><identifier>PMID: 38519152</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Canada ; Female ; Humans ; Male ; Maternal Health Services ; Pre-Eclampsia - diagnosis ; Pregnancy ; Pregnancy Outcome ; Risk Assessment - methods ; Risk Factors</subject><ispartof>The Lancet. Digital health, 2024-04, Vol.6 (4), p.e238-e250</ispartof><rights>2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38519152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery-Csobán, Tünde</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Barry, Sarah J E</creatorcontrib><creatorcontrib>Vivian Ukah, U</creatorcontrib><creatorcontrib>Payne, Beth A</creatorcontrib><creatorcontrib>Nicolaides, Kypros H</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A</creatorcontrib><creatorcontrib>Magee, Laura A</creatorcontrib><creatorcontrib>Brown, Mark A.</creatorcontrib><creatorcontrib>Davis, Gregory K.</creatorcontrib><creatorcontrib>Parker, Claire</creatorcontrib><creatorcontrib>Sass, Nelson</creatorcontrib><creatorcontrib>Ansermino, J. Mark</creatorcontrib><creatorcontrib>Cao, Vivien</creatorcontrib><creatorcontrib>Cundiff, Geoffrey W.</creatorcontrib><creatorcontrib>von Dadelszen, Emma C.M.</creatorcontrib><creatorcontrib>Douglas, M. Joanne</creatorcontrib><creatorcontrib>Dumont, Guy A.</creatorcontrib><creatorcontrib>Dunsmuir, Dustin T.</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A.</creatorcontrib><creatorcontrib>Joseph, K.S.</creatorcontrib><creatorcontrib>Lalji, Sayrin</creatorcontrib><creatorcontrib>Lee, Tang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lisonkova, Sarka</creatorcontrib><creatorcontrib>Lott, Paula</creatorcontrib><creatorcontrib>Menzies, Jennifer M.</creatorcontrib><creatorcontrib>Millman, Alexandra L.</creatorcontrib><creatorcontrib>Palmer, Lynne</creatorcontrib><creatorcontrib>Payne, Beth A.</creatorcontrib><creatorcontrib>Qu, Ziguang</creatorcontrib><creatorcontrib>Russell, James A.</creatorcontrib><creatorcontrib>Sawchuck, Diane</creatorcontrib><creatorcontrib>Shaw, Dorothy</creatorcontrib><creatorcontrib>Still, D. Keith</creatorcontrib><creatorcontrib>Ukah, U. Vivian</creatorcontrib><creatorcontrib>Wagner, Brenda</creatorcontrib><creatorcontrib>Walley, Keith R.</creatorcontrib><creatorcontrib>Hugo, Dany</creatorcontrib><creatorcontrib>Gruslin, The late Andrée</creatorcontrib><creatorcontrib>Tawagi, George</creatorcontrib><creatorcontrib>Smith, Graeme N.</creatorcontrib><creatorcontrib>Côté, Anne-Marie</creatorcontrib><creatorcontrib>Moutquin, Jean-Marie</creatorcontrib><creatorcontrib>Ouellet, Annie B.</creatorcontrib><creatorcontrib>Lee, Shoo K.</creatorcontrib><creatorcontrib>Duan, Tao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Haniff, The late Farizah</creatorcontrib><creatorcontrib>Mahajan, Swati</creatorcontrib><creatorcontrib>Noovao, Amanda</creatorcontrib><creatorcontrib>Karjalainend, Hanna</creatorcontrib><creatorcontrib>Kortelainen, Alja</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Ganzevoort, J. Wessel</creatorcontrib><creatorcontrib>Groen, Henk</creatorcontrib><creatorcontrib>Kyle, Phillipa M.</creatorcontrib><creatorcontrib>Pullar, Barbra</creatorcontrib><creatorcontrib>Bhutta, Zulfiqar A.</creatorcontrib><creatorcontrib>Qureshi, Rahat N.</creatorcontrib><creatorcontrib>Sikandar, Rozina</creatorcontrib><creatorcontrib>Bhutta, The late Shereen Z.</creatorcontrib><creatorcontrib>Cloete, Garth</creatorcontrib><creatorcontrib>Hall, David R.</creatorcontrib><creatorcontrib>van Papendorp, The late Erika</creatorcontrib><creatorcontrib>Steyn, D. Wilhelm</creatorcontrib><creatorcontrib>Biryabarema, Christine</creatorcontrib><creatorcontrib>Mirembe, Florence</creatorcontrib><creatorcontrib>Nakimuli, Annettee</creatorcontrib><creatorcontrib>Allotey, John</creatorcontrib><creatorcontrib>Nicolaides, Kypros H.</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>de Swiet, Michael</creatorcontrib><creatorcontrib>Magee, Laura A.</creatorcontrib><creatorcontrib>von Dadelszen, Peter</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Walker, James J.</creatorcontrib><creatorcontrib>Robson, Stephen C.</creatorcontrib><creatorcontrib>Broughton-Pipkin, Fiona</creatorcontrib><creatorcontrib>Loughna, Pamela</creatorcontrib><creatorcontrib>Vatish, Manu</creatorcontrib><creatorcontrib>Redman, Christopher W.G.</creatorcontrib><creatorcontrib>Barry, Sarah J.E.</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Montgomery-Csobán, Tunde</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Tsigas, Eleni Z.</creatorcontrib><creatorcontrib>Woelkers, Douglas A.</creatorcontrib><creatorcontrib>Lindheimer, Marshall D.</creatorcontrib><creatorcontrib>Grobman, William A.</creatorcontrib><creatorcontrib>Sibai, Baha M.</creatorcontrib><creatorcontrib>Merialdi, Mario</creatorcontrib><creatorcontrib>Widmer, Mariana</creatorcontrib><creatorcontrib>PIERS Consortium</creatorcontrib><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><title>The Lancet. Digital health</title><addtitle>Lancet Digit Health</addtitle><description>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia. We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios. Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR &lt;0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR &gt;0·2 and +LR &lt;5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR &gt;10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%). The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers. University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill &amp; Melinda Gates Foundation.</description><subject>Canada</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Maternal Health Services</subject><subject>Pre-Eclampsia - diagnosis</subject><subject>Pregnancy</subject><subject>Pregnancy Outcome</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><issn>2589-7500</issn><issn>2589-7500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctuFDEQtBCIRCGfAPJxcxji58yYC0JRIJE2AhE4W370ZA0z9mLPbpS_x8mGJZw4ueSurq7uQug1JW8poe3pNZO9ajpJyILxE0JY2zXiGTrcfz9_gg_QcSk_SGUxyruue4kOeC-popIdou2VcasQAY9gcgzxpoFo7AgeT2aGHM2Icyg_sSkFSpkgznhIGd-mCvFtmFd4naEBN5ppXYLBi3kF-Mvl-dfr5mqJp-RhPHmHzQ6NVR-XeePvXqEXgxkLHD--R-j7x_NvZxfN8vOny7MPy8YJ2s4NUwKGVhJloXOKeu5UJ5gQivWW99wOtBdWKuOkc9R66dhAnVfM1kprheJH6P1Od72xE3hX_Wcz6nUOk8l3Opmg_63EsNI3aaspUT3vWVsVFo8KOf3aQJn1FIqru5gIaVM0q44IEb3oKlXuqC6nUjIM-zmU6Pvc9ENu-j4Uzbh-yE2L2vfmqcl915-U_m4B9VTbAFkXFyA68CGDm7VP4T8jfgNUoKk_</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Montgomery-Csobán, Tünde</creator><creator>Kavanagh, Kimberley</creator><creator>Murray, Paul</creator><creator>Robertson, Chris</creator><creator>Barry, Sarah J E</creator><creator>Vivian Ukah, U</creator><creator>Payne, Beth A</creator><creator>Nicolaides, Kypros H</creator><creator>Syngelaki, Argyro</creator><creator>Ionescu, Olivia</creator><creator>Akolekar, Ranjit</creator><creator>Hutcheon, Jennifer A</creator><creator>Magee, Laura A</creator><creator>Brown, Mark A.</creator><creator>Davis, Gregory K.</creator><creator>Parker, Claire</creator><creator>Sass, Nelson</creator><creator>Ansermino, J. Mark</creator><creator>Cao, Vivien</creator><creator>Cundiff, Geoffrey W.</creator><creator>von Dadelszen, Emma C.M.</creator><creator>Douglas, M. Joanne</creator><creator>Dumont, Guy A.</creator><creator>Dunsmuir, Dustin T.</creator><creator>Hutcheon, Jennifer A.</creator><creator>Joseph, K.S.</creator><creator>Lalji, Sayrin</creator><creator>Lee, Tang</creator><creator>Li, Jing</creator><creator>Lisonkova, Sarka</creator><creator>Lott, Paula</creator><creator>Menzies, Jennifer M.</creator><creator>Millman, Alexandra L.</creator><creator>Palmer, Lynne</creator><creator>Payne, Beth A.</creator><creator>Qu, Ziguang</creator><creator>Russell, James A.</creator><creator>Sawchuck, Diane</creator><creator>Shaw, Dorothy</creator><creator>Still, D. Keith</creator><creator>Ukah, U. Vivian</creator><creator>Wagner, Brenda</creator><creator>Walley, Keith R.</creator><creator>Hugo, Dany</creator><creator>Gruslin, The late Andrée</creator><creator>Tawagi, George</creator><creator>Smith, Graeme N.</creator><creator>Côté, Anne-Marie</creator><creator>Moutquin, Jean-Marie</creator><creator>Ouellet, Annie B.</creator><creator>Lee, Shoo K.</creator><creator>Duan, Tao</creator><creator>Zhou, Jian</creator><creator>Haniff, The late Farizah</creator><creator>Mahajan, Swati</creator><creator>Noovao, Amanda</creator><creator>Karjalainend, Hanna</creator><creator>Kortelainen, Alja</creator><creator>Laivuori, Hannele</creator><creator>Ganzevoort, J. Wessel</creator><creator>Groen, Henk</creator><creator>Kyle, Phillipa M.</creator><creator>Pullar, Barbra</creator><creator>Bhutta, Zulfiqar A.</creator><creator>Qureshi, Rahat N.</creator><creator>Sikandar, Rozina</creator><creator>Bhutta, The late Shereen Z.</creator><creator>Cloete, Garth</creator><creator>Hall, David R.</creator><creator>van Papendorp, The late Erika</creator><creator>Steyn, D. Wilhelm</creator><creator>Biryabarema, Christine</creator><creator>Mirembe, Florence</creator><creator>Nakimuli, Annettee</creator><creator>Allotey, John</creator><creator>Nicolaides, Kypros H.</creator><creator>Ionescu, Olivia</creator><creator>Syngelaki, Argyro</creator><creator>de Swiet, Michael</creator><creator>Magee, Laura A.</creator><creator>von Dadelszen, Peter</creator><creator>Akolekar, Ranjit</creator><creator>Walker, James J.</creator><creator>Robson, Stephen C.</creator><creator>Broughton-Pipkin, Fiona</creator><creator>Loughna, Pamela</creator><creator>Vatish, Manu</creator><creator>Redman, Christopher W.G.</creator><creator>Barry, Sarah J.E.</creator><creator>Kavanagh, Kimberley</creator><creator>Montgomery-Csobán, Tunde</creator><creator>Murray, Paul</creator><creator>Robertson, Chris</creator><creator>Tsigas, Eleni Z.</creator><creator>Woelkers, Douglas A.</creator><creator>Lindheimer, Marshall D.</creator><creator>Grobman, William A.</creator><creator>Sibai, Baha M.</creator><creator>Merialdi, Mario</creator><creator>Widmer, Mariana</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240401</creationdate><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><author>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Canada</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Maternal Health Services</topic><topic>Pre-Eclampsia - diagnosis</topic><topic>Pregnancy</topic><topic>Pregnancy Outcome</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery-Csobán, Tünde</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Barry, Sarah J E</creatorcontrib><creatorcontrib>Vivian Ukah, U</creatorcontrib><creatorcontrib>Payne, Beth A</creatorcontrib><creatorcontrib>Nicolaides, Kypros H</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A</creatorcontrib><creatorcontrib>Magee, Laura A</creatorcontrib><creatorcontrib>Brown, Mark A.</creatorcontrib><creatorcontrib>Davis, Gregory K.</creatorcontrib><creatorcontrib>Parker, Claire</creatorcontrib><creatorcontrib>Sass, Nelson</creatorcontrib><creatorcontrib>Ansermino, J. Mark</creatorcontrib><creatorcontrib>Cao, Vivien</creatorcontrib><creatorcontrib>Cundiff, Geoffrey W.</creatorcontrib><creatorcontrib>von Dadelszen, Emma C.M.</creatorcontrib><creatorcontrib>Douglas, M. Joanne</creatorcontrib><creatorcontrib>Dumont, Guy A.</creatorcontrib><creatorcontrib>Dunsmuir, Dustin T.</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A.</creatorcontrib><creatorcontrib>Joseph, K.S.</creatorcontrib><creatorcontrib>Lalji, Sayrin</creatorcontrib><creatorcontrib>Lee, Tang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lisonkova, Sarka</creatorcontrib><creatorcontrib>Lott, Paula</creatorcontrib><creatorcontrib>Menzies, Jennifer M.</creatorcontrib><creatorcontrib>Millman, Alexandra L.</creatorcontrib><creatorcontrib>Palmer, Lynne</creatorcontrib><creatorcontrib>Payne, Beth A.</creatorcontrib><creatorcontrib>Qu, Ziguang</creatorcontrib><creatorcontrib>Russell, James A.</creatorcontrib><creatorcontrib>Sawchuck, Diane</creatorcontrib><creatorcontrib>Shaw, Dorothy</creatorcontrib><creatorcontrib>Still, D. Keith</creatorcontrib><creatorcontrib>Ukah, U. Vivian</creatorcontrib><creatorcontrib>Wagner, Brenda</creatorcontrib><creatorcontrib>Walley, Keith R.</creatorcontrib><creatorcontrib>Hugo, Dany</creatorcontrib><creatorcontrib>Gruslin, The late Andrée</creatorcontrib><creatorcontrib>Tawagi, George</creatorcontrib><creatorcontrib>Smith, Graeme N.</creatorcontrib><creatorcontrib>Côté, Anne-Marie</creatorcontrib><creatorcontrib>Moutquin, Jean-Marie</creatorcontrib><creatorcontrib>Ouellet, Annie B.</creatorcontrib><creatorcontrib>Lee, Shoo K.</creatorcontrib><creatorcontrib>Duan, Tao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Haniff, The late Farizah</creatorcontrib><creatorcontrib>Mahajan, Swati</creatorcontrib><creatorcontrib>Noovao, Amanda</creatorcontrib><creatorcontrib>Karjalainend, Hanna</creatorcontrib><creatorcontrib>Kortelainen, Alja</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Ganzevoort, J. Wessel</creatorcontrib><creatorcontrib>Groen, Henk</creatorcontrib><creatorcontrib>Kyle, Phillipa M.</creatorcontrib><creatorcontrib>Pullar, Barbra</creatorcontrib><creatorcontrib>Bhutta, Zulfiqar A.</creatorcontrib><creatorcontrib>Qureshi, Rahat N.</creatorcontrib><creatorcontrib>Sikandar, Rozina</creatorcontrib><creatorcontrib>Bhutta, The late Shereen Z.</creatorcontrib><creatorcontrib>Cloete, Garth</creatorcontrib><creatorcontrib>Hall, David R.</creatorcontrib><creatorcontrib>van Papendorp, The late Erika</creatorcontrib><creatorcontrib>Steyn, D. Wilhelm</creatorcontrib><creatorcontrib>Biryabarema, Christine</creatorcontrib><creatorcontrib>Mirembe, Florence</creatorcontrib><creatorcontrib>Nakimuli, Annettee</creatorcontrib><creatorcontrib>Allotey, John</creatorcontrib><creatorcontrib>Nicolaides, Kypros H.</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>de Swiet, Michael</creatorcontrib><creatorcontrib>Magee, Laura A.</creatorcontrib><creatorcontrib>von Dadelszen, Peter</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Walker, James J.</creatorcontrib><creatorcontrib>Robson, Stephen C.</creatorcontrib><creatorcontrib>Broughton-Pipkin, Fiona</creatorcontrib><creatorcontrib>Loughna, Pamela</creatorcontrib><creatorcontrib>Vatish, Manu</creatorcontrib><creatorcontrib>Redman, Christopher W.G.</creatorcontrib><creatorcontrib>Barry, Sarah J.E.</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Montgomery-Csobán, Tunde</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Tsigas, Eleni Z.</creatorcontrib><creatorcontrib>Woelkers, Douglas A.</creatorcontrib><creatorcontrib>Lindheimer, Marshall D.</creatorcontrib><creatorcontrib>Grobman, William A.</creatorcontrib><creatorcontrib>Sibai, Baha M.</creatorcontrib><creatorcontrib>Merialdi, Mario</creatorcontrib><creatorcontrib>Widmer, Mariana</creatorcontrib><creatorcontrib>PIERS Consortium</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet. Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery-Csobán, Tünde</au><au>Kavanagh, Kimberley</au><au>Murray, Paul</au><au>Robertson, Chris</au><au>Barry, Sarah J E</au><au>Vivian Ukah, U</au><au>Payne, Beth A</au><au>Nicolaides, Kypros H</au><au>Syngelaki, Argyro</au><au>Ionescu, Olivia</au><au>Akolekar, Ranjit</au><au>Hutcheon, Jennifer A</au><au>Magee, Laura A</au><au>Brown, Mark A.</au><au>Davis, Gregory K.</au><au>Parker, Claire</au><au>Sass, Nelson</au><au>Ansermino, J. Mark</au><au>Cao, Vivien</au><au>Cundiff, Geoffrey W.</au><au>von Dadelszen, Emma C.M.</au><au>Douglas, M. Joanne</au><au>Dumont, Guy A.</au><au>Dunsmuir, Dustin T.</au><au>Hutcheon, Jennifer A.</au><au>Joseph, K.S.</au><au>Lalji, Sayrin</au><au>Lee, Tang</au><au>Li, Jing</au><au>Lisonkova, Sarka</au><au>Lott, Paula</au><au>Menzies, Jennifer M.</au><au>Millman, Alexandra L.</au><au>Palmer, Lynne</au><au>Payne, Beth A.</au><au>Qu, Ziguang</au><au>Russell, James A.</au><au>Sawchuck, Diane</au><au>Shaw, Dorothy</au><au>Still, D. Keith</au><au>Ukah, U. Vivian</au><au>Wagner, Brenda</au><au>Walley, Keith R.</au><au>Hugo, Dany</au><au>Gruslin, The late Andrée</au><au>Tawagi, George</au><au>Smith, Graeme N.</au><au>Côté, Anne-Marie</au><au>Moutquin, Jean-Marie</au><au>Ouellet, Annie B.</au><au>Lee, Shoo K.</au><au>Duan, Tao</au><au>Zhou, Jian</au><au>Haniff, The late Farizah</au><au>Mahajan, Swati</au><au>Noovao, Amanda</au><au>Karjalainend, Hanna</au><au>Kortelainen, Alja</au><au>Laivuori, Hannele</au><au>Ganzevoort, J. Wessel</au><au>Groen, Henk</au><au>Kyle, Phillipa M.</au><au>Pullar, Barbra</au><au>Bhutta, Zulfiqar A.</au><au>Qureshi, Rahat N.</au><au>Sikandar, Rozina</au><au>Bhutta, The late Shereen Z.</au><au>Cloete, Garth</au><au>Hall, David R.</au><au>van Papendorp, The late Erika</au><au>Steyn, D. Wilhelm</au><au>Biryabarema, Christine</au><au>Mirembe, Florence</au><au>Nakimuli, Annettee</au><au>Allotey, John</au><au>Nicolaides, Kypros H.</au><au>Ionescu, Olivia</au><au>Syngelaki, Argyro</au><au>de Swiet, Michael</au><au>Magee, Laura A.</au><au>von Dadelszen, Peter</au><au>Akolekar, Ranjit</au><au>Walker, James J.</au><au>Robson, Stephen C.</au><au>Broughton-Pipkin, Fiona</au><au>Loughna, Pamela</au><au>Vatish, Manu</au><au>Redman, Christopher W.G.</au><au>Barry, Sarah J.E.</au><au>Kavanagh, Kimberley</au><au>Montgomery-Csobán, Tunde</au><au>Murray, Paul</au><au>Robertson, Chris</au><au>Tsigas, Eleni Z.</au><au>Woelkers, Douglas A.</au><au>Lindheimer, Marshall D.</au><au>Grobman, William A.</au><au>Sibai, Baha M.</au><au>Merialdi, Mario</au><au>Widmer, Mariana</au><aucorp>PIERS Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</atitle><jtitle>The Lancet. Digital health</jtitle><addtitle>Lancet Digit Health</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><spage>e238</spage><epage>e250</epage><pages>e238-e250</pages><issn>2589-7500</issn><eissn>2589-7500</eissn><abstract>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia. We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios. Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR &lt;0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR &gt;0·2 and +LR &lt;5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR &gt;10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%). The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers. University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill &amp; Melinda Gates Foundation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38519152</pmid><doi>10.1016/S2589-7500(23)00267-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-7500
ispartof The Lancet. Digital health, 2024-04, Vol.6 (4), p.e238-e250
issn 2589-7500
2589-7500
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983826
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Canada
Female
Humans
Male
Maternal Health Services
Pre-Eclampsia - diagnosis
Pregnancy
Pregnancy Outcome
Risk Assessment - methods
Risk Factors
title Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-enabled%20maternal%20risk%20assessment%20for%20women%20with%20pre-eclampsia%20(the%20PIERS-ML%20model):%20a%20modelling%20study&rft.jtitle=The%20Lancet.%20Digital%20health&rft.au=Montgomery-Csob%C3%A1n,%20T%C3%BCnde&rft.aucorp=PIERS%20Consortium&rft.date=2024-04-01&rft.volume=6&rft.issue=4&rft.spage=e238&rft.epage=e250&rft.pages=e238-e250&rft.issn=2589-7500&rft.eissn=2589-7500&rft_id=info:doi/10.1016/S2589-7500(23)00267-4&rft_dat=%3Cproquest_pubme%3E2974004847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974004847&rft_id=info:pmid/38519152&rft_els_id=S2589750023002674&rfr_iscdi=true