Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study
Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal ou...
Gespeichert in:
Veröffentlicht in: | The Lancet. Digital health 2024-04, Vol.6 (4), p.e238-e250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e250 |
---|---|
container_issue | 4 |
container_start_page | e238 |
container_title | The Lancet. Digital health |
container_volume | 6 |
creator | Montgomery-Csobán, Tünde Kavanagh, Kimberley Murray, Paul Robertson, Chris Barry, Sarah J E Vivian Ukah, U Payne, Beth A Nicolaides, Kypros H Syngelaki, Argyro Ionescu, Olivia Akolekar, Ranjit Hutcheon, Jennifer A Magee, Laura A Brown, Mark A. Davis, Gregory K. Parker, Claire Sass, Nelson Ansermino, J. Mark Cao, Vivien Cundiff, Geoffrey W. von Dadelszen, Emma C.M. Douglas, M. Joanne Dumont, Guy A. Dunsmuir, Dustin T. Hutcheon, Jennifer A. Joseph, K.S. Lalji, Sayrin Lee, Tang Li, Jing Lisonkova, Sarka Lott, Paula Menzies, Jennifer M. Millman, Alexandra L. Palmer, Lynne Payne, Beth A. Qu, Ziguang Russell, James A. Sawchuck, Diane Shaw, Dorothy Still, D. Keith Ukah, U. Vivian Wagner, Brenda Walley, Keith R. Hugo, Dany Gruslin, The late Andrée Tawagi, George Smith, Graeme N. Côté, Anne-Marie Moutquin, Jean-Marie Ouellet, Annie B. Lee, Shoo K. Duan, Tao Zhou, Jian Haniff, The late Farizah Mahajan, Swati Noovao, Amanda Karjalainend, Hanna Kortelainen, Alja Laivuori, Hannele Ganzevoort, J. Wessel Groen, Henk Kyle, Phillipa M. Pullar, Barbra Bhutta, Zulfiqar A. Qureshi, Rahat N. Sikandar, Rozina Bhutta, The late Shereen Z. Cloete, Garth Hall, David R. van Papendorp, The late Erika Steyn, D. Wilhelm Biryabarema, Christine Mirembe, Florence Nakimuli, Annettee Allotey, John Nicolaides, Kypros H. Ionescu, Olivia Syngelaki, Argyro de Swiet, Michael Magee, Laura A. von Dadelszen, Peter Akolekar, Ranjit Walker, James J. Robson, Stephen C. Broughton-Pipkin, Fiona Loughna, Pamela Vatish, Manu Redman, Christopher W.G. Barry, Sarah J.E. Kavanagh, Kimberley Montgomery-Csobán, Tunde Murray, Paul Robertson, Chris Tsigas, Eleni Z. Woelkers, Douglas A. Lindheimer, Marshall D. Grobman, William A. Sibai, Baha M. Merialdi, Mario Widmer, Mariana |
description | Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.
We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.
Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR 0·2 and +LR 10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).
The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.
University of Strathclyde Diversity in Data Linkage C |
doi_str_mv | 10.1016/S2589-7500(23)00267-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589750023002674</els_id><sourcerecordid>2974004847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBCIRCGfAPJxcxji58yYC0JRIJE2AhE4W370ZA0z9mLPbpS_x8mGJZw4ueSurq7uQug1JW8poe3pNZO9ajpJyILxE0JY2zXiGTrcfz9_gg_QcSk_SGUxyruue4kOeC-popIdou2VcasQAY9gcgzxpoFo7AgeT2aGHM2Icyg_sSkFSpkgznhIGd-mCvFtmFd4naEBN5ppXYLBi3kF-Mvl-dfr5mqJp-RhPHmHzQ6NVR-XeePvXqEXgxkLHD--R-j7x_NvZxfN8vOny7MPy8YJ2s4NUwKGVhJloXOKeu5UJ5gQivWW99wOtBdWKuOkc9R66dhAnVfM1kprheJH6P1Od72xE3hX_Wcz6nUOk8l3Opmg_63EsNI3aaspUT3vWVsVFo8KOf3aQJn1FIqru5gIaVM0q44IEb3oKlXuqC6nUjIM-zmU6Pvc9ENu-j4Uzbh-yE2L2vfmqcl915-U_m4B9VTbAFkXFyA68CGDm7VP4T8jfgNUoKk_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974004847</pqid></control><display><type>article</type><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana</creator><creatorcontrib>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana ; PIERS Consortium</creatorcontrib><description>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.
We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.
Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).
The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.
University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.</description><identifier>ISSN: 2589-7500</identifier><identifier>EISSN: 2589-7500</identifier><identifier>DOI: 10.1016/S2589-7500(23)00267-4</identifier><identifier>PMID: 38519152</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Canada ; Female ; Humans ; Male ; Maternal Health Services ; Pre-Eclampsia - diagnosis ; Pregnancy ; Pregnancy Outcome ; Risk Assessment - methods ; Risk Factors</subject><ispartof>The Lancet. Digital health, 2024-04, Vol.6 (4), p.e238-e250</ispartof><rights>2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38519152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery-Csobán, Tünde</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Barry, Sarah J E</creatorcontrib><creatorcontrib>Vivian Ukah, U</creatorcontrib><creatorcontrib>Payne, Beth A</creatorcontrib><creatorcontrib>Nicolaides, Kypros H</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A</creatorcontrib><creatorcontrib>Magee, Laura A</creatorcontrib><creatorcontrib>Brown, Mark A.</creatorcontrib><creatorcontrib>Davis, Gregory K.</creatorcontrib><creatorcontrib>Parker, Claire</creatorcontrib><creatorcontrib>Sass, Nelson</creatorcontrib><creatorcontrib>Ansermino, J. Mark</creatorcontrib><creatorcontrib>Cao, Vivien</creatorcontrib><creatorcontrib>Cundiff, Geoffrey W.</creatorcontrib><creatorcontrib>von Dadelszen, Emma C.M.</creatorcontrib><creatorcontrib>Douglas, M. Joanne</creatorcontrib><creatorcontrib>Dumont, Guy A.</creatorcontrib><creatorcontrib>Dunsmuir, Dustin T.</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A.</creatorcontrib><creatorcontrib>Joseph, K.S.</creatorcontrib><creatorcontrib>Lalji, Sayrin</creatorcontrib><creatorcontrib>Lee, Tang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lisonkova, Sarka</creatorcontrib><creatorcontrib>Lott, Paula</creatorcontrib><creatorcontrib>Menzies, Jennifer M.</creatorcontrib><creatorcontrib>Millman, Alexandra L.</creatorcontrib><creatorcontrib>Palmer, Lynne</creatorcontrib><creatorcontrib>Payne, Beth A.</creatorcontrib><creatorcontrib>Qu, Ziguang</creatorcontrib><creatorcontrib>Russell, James A.</creatorcontrib><creatorcontrib>Sawchuck, Diane</creatorcontrib><creatorcontrib>Shaw, Dorothy</creatorcontrib><creatorcontrib>Still, D. Keith</creatorcontrib><creatorcontrib>Ukah, U. Vivian</creatorcontrib><creatorcontrib>Wagner, Brenda</creatorcontrib><creatorcontrib>Walley, Keith R.</creatorcontrib><creatorcontrib>Hugo, Dany</creatorcontrib><creatorcontrib>Gruslin, The late Andrée</creatorcontrib><creatorcontrib>Tawagi, George</creatorcontrib><creatorcontrib>Smith, Graeme N.</creatorcontrib><creatorcontrib>Côté, Anne-Marie</creatorcontrib><creatorcontrib>Moutquin, Jean-Marie</creatorcontrib><creatorcontrib>Ouellet, Annie B.</creatorcontrib><creatorcontrib>Lee, Shoo K.</creatorcontrib><creatorcontrib>Duan, Tao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Haniff, The late Farizah</creatorcontrib><creatorcontrib>Mahajan, Swati</creatorcontrib><creatorcontrib>Noovao, Amanda</creatorcontrib><creatorcontrib>Karjalainend, Hanna</creatorcontrib><creatorcontrib>Kortelainen, Alja</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Ganzevoort, J. Wessel</creatorcontrib><creatorcontrib>Groen, Henk</creatorcontrib><creatorcontrib>Kyle, Phillipa M.</creatorcontrib><creatorcontrib>Pullar, Barbra</creatorcontrib><creatorcontrib>Bhutta, Zulfiqar A.</creatorcontrib><creatorcontrib>Qureshi, Rahat N.</creatorcontrib><creatorcontrib>Sikandar, Rozina</creatorcontrib><creatorcontrib>Bhutta, The late Shereen Z.</creatorcontrib><creatorcontrib>Cloete, Garth</creatorcontrib><creatorcontrib>Hall, David R.</creatorcontrib><creatorcontrib>van Papendorp, The late Erika</creatorcontrib><creatorcontrib>Steyn, D. Wilhelm</creatorcontrib><creatorcontrib>Biryabarema, Christine</creatorcontrib><creatorcontrib>Mirembe, Florence</creatorcontrib><creatorcontrib>Nakimuli, Annettee</creatorcontrib><creatorcontrib>Allotey, John</creatorcontrib><creatorcontrib>Nicolaides, Kypros H.</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>de Swiet, Michael</creatorcontrib><creatorcontrib>Magee, Laura A.</creatorcontrib><creatorcontrib>von Dadelszen, Peter</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Walker, James J.</creatorcontrib><creatorcontrib>Robson, Stephen C.</creatorcontrib><creatorcontrib>Broughton-Pipkin, Fiona</creatorcontrib><creatorcontrib>Loughna, Pamela</creatorcontrib><creatorcontrib>Vatish, Manu</creatorcontrib><creatorcontrib>Redman, Christopher W.G.</creatorcontrib><creatorcontrib>Barry, Sarah J.E.</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Montgomery-Csobán, Tunde</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Tsigas, Eleni Z.</creatorcontrib><creatorcontrib>Woelkers, Douglas A.</creatorcontrib><creatorcontrib>Lindheimer, Marshall D.</creatorcontrib><creatorcontrib>Grobman, William A.</creatorcontrib><creatorcontrib>Sibai, Baha M.</creatorcontrib><creatorcontrib>Merialdi, Mario</creatorcontrib><creatorcontrib>Widmer, Mariana</creatorcontrib><creatorcontrib>PIERS Consortium</creatorcontrib><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><title>The Lancet. Digital health</title><addtitle>Lancet Digit Health</addtitle><description>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.
We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.
Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).
The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.
University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.</description><subject>Canada</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Maternal Health Services</subject><subject>Pre-Eclampsia - diagnosis</subject><subject>Pregnancy</subject><subject>Pregnancy Outcome</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><issn>2589-7500</issn><issn>2589-7500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctuFDEQtBCIRCGfAPJxcxji58yYC0JRIJE2AhE4W370ZA0z9mLPbpS_x8mGJZw4ueSurq7uQug1JW8poe3pNZO9ajpJyILxE0JY2zXiGTrcfz9_gg_QcSk_SGUxyruue4kOeC-popIdou2VcasQAY9gcgzxpoFo7AgeT2aGHM2Icyg_sSkFSpkgznhIGd-mCvFtmFd4naEBN5ppXYLBi3kF-Mvl-dfr5mqJp-RhPHmHzQ6NVR-XeePvXqEXgxkLHD--R-j7x_NvZxfN8vOny7MPy8YJ2s4NUwKGVhJloXOKeu5UJ5gQivWW99wOtBdWKuOkc9R66dhAnVfM1kprheJH6P1Od72xE3hX_Wcz6nUOk8l3Opmg_63EsNI3aaspUT3vWVsVFo8KOf3aQJn1FIqru5gIaVM0q44IEb3oKlXuqC6nUjIM-zmU6Pvc9ENu-j4Uzbh-yE2L2vfmqcl915-U_m4B9VTbAFkXFyA68CGDm7VP4T8jfgNUoKk_</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Montgomery-Csobán, Tünde</creator><creator>Kavanagh, Kimberley</creator><creator>Murray, Paul</creator><creator>Robertson, Chris</creator><creator>Barry, Sarah J E</creator><creator>Vivian Ukah, U</creator><creator>Payne, Beth A</creator><creator>Nicolaides, Kypros H</creator><creator>Syngelaki, Argyro</creator><creator>Ionescu, Olivia</creator><creator>Akolekar, Ranjit</creator><creator>Hutcheon, Jennifer A</creator><creator>Magee, Laura A</creator><creator>Brown, Mark A.</creator><creator>Davis, Gregory K.</creator><creator>Parker, Claire</creator><creator>Sass, Nelson</creator><creator>Ansermino, J. Mark</creator><creator>Cao, Vivien</creator><creator>Cundiff, Geoffrey W.</creator><creator>von Dadelszen, Emma C.M.</creator><creator>Douglas, M. Joanne</creator><creator>Dumont, Guy A.</creator><creator>Dunsmuir, Dustin T.</creator><creator>Hutcheon, Jennifer A.</creator><creator>Joseph, K.S.</creator><creator>Lalji, Sayrin</creator><creator>Lee, Tang</creator><creator>Li, Jing</creator><creator>Lisonkova, Sarka</creator><creator>Lott, Paula</creator><creator>Menzies, Jennifer M.</creator><creator>Millman, Alexandra L.</creator><creator>Palmer, Lynne</creator><creator>Payne, Beth A.</creator><creator>Qu, Ziguang</creator><creator>Russell, James A.</creator><creator>Sawchuck, Diane</creator><creator>Shaw, Dorothy</creator><creator>Still, D. Keith</creator><creator>Ukah, U. Vivian</creator><creator>Wagner, Brenda</creator><creator>Walley, Keith R.</creator><creator>Hugo, Dany</creator><creator>Gruslin, The late Andrée</creator><creator>Tawagi, George</creator><creator>Smith, Graeme N.</creator><creator>Côté, Anne-Marie</creator><creator>Moutquin, Jean-Marie</creator><creator>Ouellet, Annie B.</creator><creator>Lee, Shoo K.</creator><creator>Duan, Tao</creator><creator>Zhou, Jian</creator><creator>Haniff, The late Farizah</creator><creator>Mahajan, Swati</creator><creator>Noovao, Amanda</creator><creator>Karjalainend, Hanna</creator><creator>Kortelainen, Alja</creator><creator>Laivuori, Hannele</creator><creator>Ganzevoort, J. Wessel</creator><creator>Groen, Henk</creator><creator>Kyle, Phillipa M.</creator><creator>Pullar, Barbra</creator><creator>Bhutta, Zulfiqar A.</creator><creator>Qureshi, Rahat N.</creator><creator>Sikandar, Rozina</creator><creator>Bhutta, The late Shereen Z.</creator><creator>Cloete, Garth</creator><creator>Hall, David R.</creator><creator>van Papendorp, The late Erika</creator><creator>Steyn, D. Wilhelm</creator><creator>Biryabarema, Christine</creator><creator>Mirembe, Florence</creator><creator>Nakimuli, Annettee</creator><creator>Allotey, John</creator><creator>Nicolaides, Kypros H.</creator><creator>Ionescu, Olivia</creator><creator>Syngelaki, Argyro</creator><creator>de Swiet, Michael</creator><creator>Magee, Laura A.</creator><creator>von Dadelszen, Peter</creator><creator>Akolekar, Ranjit</creator><creator>Walker, James J.</creator><creator>Robson, Stephen C.</creator><creator>Broughton-Pipkin, Fiona</creator><creator>Loughna, Pamela</creator><creator>Vatish, Manu</creator><creator>Redman, Christopher W.G.</creator><creator>Barry, Sarah J.E.</creator><creator>Kavanagh, Kimberley</creator><creator>Montgomery-Csobán, Tunde</creator><creator>Murray, Paul</creator><creator>Robertson, Chris</creator><creator>Tsigas, Eleni Z.</creator><creator>Woelkers, Douglas A.</creator><creator>Lindheimer, Marshall D.</creator><creator>Grobman, William A.</creator><creator>Sibai, Baha M.</creator><creator>Merialdi, Mario</creator><creator>Widmer, Mariana</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240401</creationdate><title>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</title><author>Montgomery-Csobán, Tünde ; Kavanagh, Kimberley ; Murray, Paul ; Robertson, Chris ; Barry, Sarah J E ; Vivian Ukah, U ; Payne, Beth A ; Nicolaides, Kypros H ; Syngelaki, Argyro ; Ionescu, Olivia ; Akolekar, Ranjit ; Hutcheon, Jennifer A ; Magee, Laura A ; Brown, Mark A. ; Davis, Gregory K. ; Parker, Claire ; Sass, Nelson ; Ansermino, J. Mark ; Cao, Vivien ; Cundiff, Geoffrey W. ; von Dadelszen, Emma C.M. ; Douglas, M. Joanne ; Dumont, Guy A. ; Dunsmuir, Dustin T. ; Hutcheon, Jennifer A. ; Joseph, K.S. ; Lalji, Sayrin ; Lee, Tang ; Li, Jing ; Lisonkova, Sarka ; Lott, Paula ; Menzies, Jennifer M. ; Millman, Alexandra L. ; Palmer, Lynne ; Payne, Beth A. ; Qu, Ziguang ; Russell, James A. ; Sawchuck, Diane ; Shaw, Dorothy ; Still, D. Keith ; Ukah, U. Vivian ; Wagner, Brenda ; Walley, Keith R. ; Hugo, Dany ; Gruslin, The late Andrée ; Tawagi, George ; Smith, Graeme N. ; Côté, Anne-Marie ; Moutquin, Jean-Marie ; Ouellet, Annie B. ; Lee, Shoo K. ; Duan, Tao ; Zhou, Jian ; Haniff, The late Farizah ; Mahajan, Swati ; Noovao, Amanda ; Karjalainend, Hanna ; Kortelainen, Alja ; Laivuori, Hannele ; Ganzevoort, J. Wessel ; Groen, Henk ; Kyle, Phillipa M. ; Pullar, Barbra ; Bhutta, Zulfiqar A. ; Qureshi, Rahat N. ; Sikandar, Rozina ; Bhutta, The late Shereen Z. ; Cloete, Garth ; Hall, David R. ; van Papendorp, The late Erika ; Steyn, D. Wilhelm ; Biryabarema, Christine ; Mirembe, Florence ; Nakimuli, Annettee ; Allotey, John ; Nicolaides, Kypros H. ; Ionescu, Olivia ; Syngelaki, Argyro ; de Swiet, Michael ; Magee, Laura A. ; von Dadelszen, Peter ; Akolekar, Ranjit ; Walker, James J. ; Robson, Stephen C. ; Broughton-Pipkin, Fiona ; Loughna, Pamela ; Vatish, Manu ; Redman, Christopher W.G. ; Barry, Sarah J.E. ; Kavanagh, Kimberley ; Montgomery-Csobán, Tunde ; Murray, Paul ; Robertson, Chris ; Tsigas, Eleni Z. ; Woelkers, Douglas A. ; Lindheimer, Marshall D. ; Grobman, William A. ; Sibai, Baha M. ; Merialdi, Mario ; Widmer, Mariana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-294ef6509be7c91d3c974244928b383bf184b59ac5cc1bd5c2f1cd92bbf16b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Canada</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Maternal Health Services</topic><topic>Pre-Eclampsia - diagnosis</topic><topic>Pregnancy</topic><topic>Pregnancy Outcome</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery-Csobán, Tünde</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Barry, Sarah J E</creatorcontrib><creatorcontrib>Vivian Ukah, U</creatorcontrib><creatorcontrib>Payne, Beth A</creatorcontrib><creatorcontrib>Nicolaides, Kypros H</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A</creatorcontrib><creatorcontrib>Magee, Laura A</creatorcontrib><creatorcontrib>Brown, Mark A.</creatorcontrib><creatorcontrib>Davis, Gregory K.</creatorcontrib><creatorcontrib>Parker, Claire</creatorcontrib><creatorcontrib>Sass, Nelson</creatorcontrib><creatorcontrib>Ansermino, J. Mark</creatorcontrib><creatorcontrib>Cao, Vivien</creatorcontrib><creatorcontrib>Cundiff, Geoffrey W.</creatorcontrib><creatorcontrib>von Dadelszen, Emma C.M.</creatorcontrib><creatorcontrib>Douglas, M. Joanne</creatorcontrib><creatorcontrib>Dumont, Guy A.</creatorcontrib><creatorcontrib>Dunsmuir, Dustin T.</creatorcontrib><creatorcontrib>Hutcheon, Jennifer A.</creatorcontrib><creatorcontrib>Joseph, K.S.</creatorcontrib><creatorcontrib>Lalji, Sayrin</creatorcontrib><creatorcontrib>Lee, Tang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lisonkova, Sarka</creatorcontrib><creatorcontrib>Lott, Paula</creatorcontrib><creatorcontrib>Menzies, Jennifer M.</creatorcontrib><creatorcontrib>Millman, Alexandra L.</creatorcontrib><creatorcontrib>Palmer, Lynne</creatorcontrib><creatorcontrib>Payne, Beth A.</creatorcontrib><creatorcontrib>Qu, Ziguang</creatorcontrib><creatorcontrib>Russell, James A.</creatorcontrib><creatorcontrib>Sawchuck, Diane</creatorcontrib><creatorcontrib>Shaw, Dorothy</creatorcontrib><creatorcontrib>Still, D. Keith</creatorcontrib><creatorcontrib>Ukah, U. Vivian</creatorcontrib><creatorcontrib>Wagner, Brenda</creatorcontrib><creatorcontrib>Walley, Keith R.</creatorcontrib><creatorcontrib>Hugo, Dany</creatorcontrib><creatorcontrib>Gruslin, The late Andrée</creatorcontrib><creatorcontrib>Tawagi, George</creatorcontrib><creatorcontrib>Smith, Graeme N.</creatorcontrib><creatorcontrib>Côté, Anne-Marie</creatorcontrib><creatorcontrib>Moutquin, Jean-Marie</creatorcontrib><creatorcontrib>Ouellet, Annie B.</creatorcontrib><creatorcontrib>Lee, Shoo K.</creatorcontrib><creatorcontrib>Duan, Tao</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Haniff, The late Farizah</creatorcontrib><creatorcontrib>Mahajan, Swati</creatorcontrib><creatorcontrib>Noovao, Amanda</creatorcontrib><creatorcontrib>Karjalainend, Hanna</creatorcontrib><creatorcontrib>Kortelainen, Alja</creatorcontrib><creatorcontrib>Laivuori, Hannele</creatorcontrib><creatorcontrib>Ganzevoort, J. Wessel</creatorcontrib><creatorcontrib>Groen, Henk</creatorcontrib><creatorcontrib>Kyle, Phillipa M.</creatorcontrib><creatorcontrib>Pullar, Barbra</creatorcontrib><creatorcontrib>Bhutta, Zulfiqar A.</creatorcontrib><creatorcontrib>Qureshi, Rahat N.</creatorcontrib><creatorcontrib>Sikandar, Rozina</creatorcontrib><creatorcontrib>Bhutta, The late Shereen Z.</creatorcontrib><creatorcontrib>Cloete, Garth</creatorcontrib><creatorcontrib>Hall, David R.</creatorcontrib><creatorcontrib>van Papendorp, The late Erika</creatorcontrib><creatorcontrib>Steyn, D. Wilhelm</creatorcontrib><creatorcontrib>Biryabarema, Christine</creatorcontrib><creatorcontrib>Mirembe, Florence</creatorcontrib><creatorcontrib>Nakimuli, Annettee</creatorcontrib><creatorcontrib>Allotey, John</creatorcontrib><creatorcontrib>Nicolaides, Kypros H.</creatorcontrib><creatorcontrib>Ionescu, Olivia</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>de Swiet, Michael</creatorcontrib><creatorcontrib>Magee, Laura A.</creatorcontrib><creatorcontrib>von Dadelszen, Peter</creatorcontrib><creatorcontrib>Akolekar, Ranjit</creatorcontrib><creatorcontrib>Walker, James J.</creatorcontrib><creatorcontrib>Robson, Stephen C.</creatorcontrib><creatorcontrib>Broughton-Pipkin, Fiona</creatorcontrib><creatorcontrib>Loughna, Pamela</creatorcontrib><creatorcontrib>Vatish, Manu</creatorcontrib><creatorcontrib>Redman, Christopher W.G.</creatorcontrib><creatorcontrib>Barry, Sarah J.E.</creatorcontrib><creatorcontrib>Kavanagh, Kimberley</creatorcontrib><creatorcontrib>Montgomery-Csobán, Tunde</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Robertson, Chris</creatorcontrib><creatorcontrib>Tsigas, Eleni Z.</creatorcontrib><creatorcontrib>Woelkers, Douglas A.</creatorcontrib><creatorcontrib>Lindheimer, Marshall D.</creatorcontrib><creatorcontrib>Grobman, William A.</creatorcontrib><creatorcontrib>Sibai, Baha M.</creatorcontrib><creatorcontrib>Merialdi, Mario</creatorcontrib><creatorcontrib>Widmer, Mariana</creatorcontrib><creatorcontrib>PIERS Consortium</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet. Digital health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery-Csobán, Tünde</au><au>Kavanagh, Kimberley</au><au>Murray, Paul</au><au>Robertson, Chris</au><au>Barry, Sarah J E</au><au>Vivian Ukah, U</au><au>Payne, Beth A</au><au>Nicolaides, Kypros H</au><au>Syngelaki, Argyro</au><au>Ionescu, Olivia</au><au>Akolekar, Ranjit</au><au>Hutcheon, Jennifer A</au><au>Magee, Laura A</au><au>Brown, Mark A.</au><au>Davis, Gregory K.</au><au>Parker, Claire</au><au>Sass, Nelson</au><au>Ansermino, J. Mark</au><au>Cao, Vivien</au><au>Cundiff, Geoffrey W.</au><au>von Dadelszen, Emma C.M.</au><au>Douglas, M. Joanne</au><au>Dumont, Guy A.</au><au>Dunsmuir, Dustin T.</au><au>Hutcheon, Jennifer A.</au><au>Joseph, K.S.</au><au>Lalji, Sayrin</au><au>Lee, Tang</au><au>Li, Jing</au><au>Lisonkova, Sarka</au><au>Lott, Paula</au><au>Menzies, Jennifer M.</au><au>Millman, Alexandra L.</au><au>Palmer, Lynne</au><au>Payne, Beth A.</au><au>Qu, Ziguang</au><au>Russell, James A.</au><au>Sawchuck, Diane</au><au>Shaw, Dorothy</au><au>Still, D. Keith</au><au>Ukah, U. Vivian</au><au>Wagner, Brenda</au><au>Walley, Keith R.</au><au>Hugo, Dany</au><au>Gruslin, The late Andrée</au><au>Tawagi, George</au><au>Smith, Graeme N.</au><au>Côté, Anne-Marie</au><au>Moutquin, Jean-Marie</au><au>Ouellet, Annie B.</au><au>Lee, Shoo K.</au><au>Duan, Tao</au><au>Zhou, Jian</au><au>Haniff, The late Farizah</au><au>Mahajan, Swati</au><au>Noovao, Amanda</au><au>Karjalainend, Hanna</au><au>Kortelainen, Alja</au><au>Laivuori, Hannele</au><au>Ganzevoort, J. Wessel</au><au>Groen, Henk</au><au>Kyle, Phillipa M.</au><au>Pullar, Barbra</au><au>Bhutta, Zulfiqar A.</au><au>Qureshi, Rahat N.</au><au>Sikandar, Rozina</au><au>Bhutta, The late Shereen Z.</au><au>Cloete, Garth</au><au>Hall, David R.</au><au>van Papendorp, The late Erika</au><au>Steyn, D. Wilhelm</au><au>Biryabarema, Christine</au><au>Mirembe, Florence</au><au>Nakimuli, Annettee</au><au>Allotey, John</au><au>Nicolaides, Kypros H.</au><au>Ionescu, Olivia</au><au>Syngelaki, Argyro</au><au>de Swiet, Michael</au><au>Magee, Laura A.</au><au>von Dadelszen, Peter</au><au>Akolekar, Ranjit</au><au>Walker, James J.</au><au>Robson, Stephen C.</au><au>Broughton-Pipkin, Fiona</au><au>Loughna, Pamela</au><au>Vatish, Manu</au><au>Redman, Christopher W.G.</au><au>Barry, Sarah J.E.</au><au>Kavanagh, Kimberley</au><au>Montgomery-Csobán, Tunde</au><au>Murray, Paul</au><au>Robertson, Chris</au><au>Tsigas, Eleni Z.</au><au>Woelkers, Douglas A.</au><au>Lindheimer, Marshall D.</au><au>Grobman, William A.</au><au>Sibai, Baha M.</au><au>Merialdi, Mario</au><au>Widmer, Mariana</au><aucorp>PIERS Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study</atitle><jtitle>The Lancet. Digital health</jtitle><addtitle>Lancet Digit Health</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><spage>e238</spage><epage>e250</epage><pages>e238-e250</pages><issn>2589-7500</issn><eissn>2589-7500</eissn><abstract>Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.
We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.
Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).
The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.
University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38519152</pmid><doi>10.1016/S2589-7500(23)00267-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-7500 |
ispartof | The Lancet. Digital health, 2024-04, Vol.6 (4), p.e238-e250 |
issn | 2589-7500 2589-7500 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10983826 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Canada Female Humans Male Maternal Health Services Pre-Eclampsia - diagnosis Pregnancy Pregnancy Outcome Risk Assessment - methods Risk Factors |
title | Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-enabled%20maternal%20risk%20assessment%20for%20women%20with%20pre-eclampsia%20(the%20PIERS-ML%20model):%20a%20modelling%20study&rft.jtitle=The%20Lancet.%20Digital%20health&rft.au=Montgomery-Csob%C3%A1n,%20T%C3%BCnde&rft.aucorp=PIERS%20Consortium&rft.date=2024-04-01&rft.volume=6&rft.issue=4&rft.spage=e238&rft.epage=e250&rft.pages=e238-e250&rft.issn=2589-7500&rft.eissn=2589-7500&rft_id=info:doi/10.1016/S2589-7500(23)00267-4&rft_dat=%3Cproquest_pubme%3E2974004847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974004847&rft_id=info:pmid/38519152&rft_els_id=S2589750023002674&rfr_iscdi=true |