Generalized reporter score-based enrichment analysis for omics data

Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2024-03, Vol.25 (3)
Hauptverfasser: Peng, Chen, Chen, Qiong, Tan, Shangjin, Shen, Xiaotao, Jiang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Briefings in bioinformatics
container_volume 25
creator Peng, Chen
Chen, Qiong
Tan, Shangjin
Shen, Xiaotao
Jiang, Chao
description Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/bib/bbae116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae116</oup_id><sourcerecordid>3014006771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVJaFKnp97DQiAEytbSSpZ2TyGYNg0YcmnOQh-jWmZ35Ui7Afevrxa7pskhpxGjH2_ezEPoC8HfCG7oXHs911oBIfwDOidMiJLhBTuZ3lyUC8bpGfqU0gbjCouafERntJ66FTtHy3voIarW_wFbRNiGOEAskgkRSq1SbkIfvVl30A-F6lW7Sz4VLsQidN6kwqpBXaBTp9oEnw91hp5-fP-1_FmuHu8flner0tCmGUqiwbjaVJWltHGOKawWriaVZVY5LSyvKBe6brjFBhrDccWcoZhjI6xhWtEZut3rbkfdgTXZUnYut9F3Ku5kUF6-_un9Wv4OLzKfSfCG1Fnh5qAQw_MIaZCdTwbaVvUQxiQpJgxjLgTJ6NUbdBPGmA8wUbTJvimZqK97ysSQUgR3dEPwNJbKnI48pJPpy_8XOLL_4sjA9R4I4_Zdpb_BCJno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039812311</pqid></control><display><type>article</type><title>Generalized reporter score-based enrichment analysis for omics data</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><creator>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</creator><creatorcontrib>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</creatorcontrib><description>Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae116</identifier><identifier>PMID: 38546324</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Benchmarking ; Biomedical Research ; Databases, Factual ; Enrichment ; Medical research ; Metabolome ; Microbiomes ; Microbiota ; Problem Solving Protocol ; Taxonomy ; Transcriptomes</subject><ispartof>Briefings in bioinformatics, 2024-03, Vol.25 (3)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</cites><orcidid>0000-0003-0260-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38546324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Chen, Qiong</creatorcontrib><creatorcontrib>Tan, Shangjin</creatorcontrib><creatorcontrib>Shen, Xiaotao</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><title>Generalized reporter score-based enrichment analysis for omics data</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields. Graphical Abstract Graphical Abstract</description><subject>Benchmarking</subject><subject>Biomedical Research</subject><subject>Databases, Factual</subject><subject>Enrichment</subject><subject>Medical research</subject><subject>Metabolome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Problem Solving Protocol</subject><subject>Taxonomy</subject><subject>Transcriptomes</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1rGzEQxUVJaFKnp97DQiAEytbSSpZ2TyGYNg0YcmnOQh-jWmZ35Ui7Afevrxa7pskhpxGjH2_ezEPoC8HfCG7oXHs911oBIfwDOidMiJLhBTuZ3lyUC8bpGfqU0gbjCouafERntJ66FTtHy3voIarW_wFbRNiGOEAskgkRSq1SbkIfvVl30A-F6lW7Sz4VLsQidN6kwqpBXaBTp9oEnw91hp5-fP-1_FmuHu8flner0tCmGUqiwbjaVJWltHGOKawWriaVZVY5LSyvKBe6brjFBhrDccWcoZhjI6xhWtEZut3rbkfdgTXZUnYut9F3Ku5kUF6-_un9Wv4OLzKfSfCG1Fnh5qAQw_MIaZCdTwbaVvUQxiQpJgxjLgTJ6NUbdBPGmA8wUbTJvimZqK97ysSQUgR3dEPwNJbKnI48pJPpy_8XOLL_4sjA9R4I4_Zdpb_BCJno</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Peng, Chen</creator><creator>Chen, Qiong</creator><creator>Tan, Shangjin</creator><creator>Shen, Xiaotao</creator><creator>Jiang, Chao</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0260-7271</orcidid></search><sort><creationdate>20240327</creationdate><title>Generalized reporter score-based enrichment analysis for omics data</title><author>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarking</topic><topic>Biomedical Research</topic><topic>Databases, Factual</topic><topic>Enrichment</topic><topic>Medical research</topic><topic>Metabolome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Problem Solving Protocol</topic><topic>Taxonomy</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Chen, Qiong</creatorcontrib><creatorcontrib>Tan, Shangjin</creatorcontrib><creatorcontrib>Shen, Xiaotao</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Chen</au><au>Chen, Qiong</au><au>Tan, Shangjin</au><au>Shen, Xiaotao</au><au>Jiang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized reporter score-based enrichment analysis for omics data</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>25</volume><issue>3</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38546324</pmid><doi>10.1093/bib/bbae116</doi><orcidid>https://orcid.org/0000-0003-0260-7271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2024-03, Vol.25 (3)
issn 1467-5463
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976918
source Oxford Journals Open Access Collection; MEDLINE; PubMed Central
subjects Benchmarking
Biomedical Research
Databases, Factual
Enrichment
Medical research
Metabolome
Microbiomes
Microbiota
Problem Solving Protocol
Taxonomy
Transcriptomes
title Generalized reporter score-based enrichment analysis for omics data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20reporter%20score-based%20enrichment%20analysis%20for%20omics%20data&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Peng,%20Chen&rft.date=2024-03-27&rft.volume=25&rft.issue=3&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae116&rft_dat=%3Cproquest_pubme%3E3014006771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039812311&rft_id=info:pmid/38546324&rft_oup_id=10.1093/bib/bbae116&rfr_iscdi=true