Generalized reporter score-based enrichment analysis for omics data
Abstract Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2024-03, Vol.25 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 25 |
creator | Peng, Chen Chen, Qiong Tan, Shangjin Shen, Xiaotao Jiang, Chao |
description | Abstract
Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/bib/bbae116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae116</oup_id><sourcerecordid>3014006771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVJaFKnp97DQiAEytbSSpZ2TyGYNg0YcmnOQh-jWmZ35Ui7Afevrxa7pskhpxGjH2_ezEPoC8HfCG7oXHs911oBIfwDOidMiJLhBTuZ3lyUC8bpGfqU0gbjCouafERntJ66FTtHy3voIarW_wFbRNiGOEAskgkRSq1SbkIfvVl30A-F6lW7Sz4VLsQidN6kwqpBXaBTp9oEnw91hp5-fP-1_FmuHu8flner0tCmGUqiwbjaVJWltHGOKawWriaVZVY5LSyvKBe6brjFBhrDccWcoZhjI6xhWtEZut3rbkfdgTXZUnYut9F3Ku5kUF6-_un9Wv4OLzKfSfCG1Fnh5qAQw_MIaZCdTwbaVvUQxiQpJgxjLgTJ6NUbdBPGmA8wUbTJvimZqK97ysSQUgR3dEPwNJbKnI48pJPpy_8XOLL_4sjA9R4I4_Zdpb_BCJno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039812311</pqid></control><display><type>article</type><title>Generalized reporter score-based enrichment analysis for omics data</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><creator>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</creator><creatorcontrib>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</creatorcontrib><description>Abstract
Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae116</identifier><identifier>PMID: 38546324</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Benchmarking ; Biomedical Research ; Databases, Factual ; Enrichment ; Medical research ; Metabolome ; Microbiomes ; Microbiota ; Problem Solving Protocol ; Taxonomy ; Transcriptomes</subject><ispartof>Briefings in bioinformatics, 2024-03, Vol.25 (3)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</cites><orcidid>0000-0003-0260-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38546324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Chen, Qiong</creatorcontrib><creatorcontrib>Tan, Shangjin</creatorcontrib><creatorcontrib>Shen, Xiaotao</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><title>Generalized reporter score-based enrichment analysis for omics data</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.
Graphical Abstract
Graphical Abstract</description><subject>Benchmarking</subject><subject>Biomedical Research</subject><subject>Databases, Factual</subject><subject>Enrichment</subject><subject>Medical research</subject><subject>Metabolome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Problem Solving Protocol</subject><subject>Taxonomy</subject><subject>Transcriptomes</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1rGzEQxUVJaFKnp97DQiAEytbSSpZ2TyGYNg0YcmnOQh-jWmZ35Ui7Afevrxa7pskhpxGjH2_ezEPoC8HfCG7oXHs911oBIfwDOidMiJLhBTuZ3lyUC8bpGfqU0gbjCouafERntJ66FTtHy3voIarW_wFbRNiGOEAskgkRSq1SbkIfvVl30A-F6lW7Sz4VLsQidN6kwqpBXaBTp9oEnw91hp5-fP-1_FmuHu8flner0tCmGUqiwbjaVJWltHGOKawWriaVZVY5LSyvKBe6brjFBhrDccWcoZhjI6xhWtEZut3rbkfdgTXZUnYut9F3Ku5kUF6-_un9Wv4OLzKfSfCG1Fnh5qAQw_MIaZCdTwbaVvUQxiQpJgxjLgTJ6NUbdBPGmA8wUbTJvimZqK97ysSQUgR3dEPwNJbKnI48pJPpy_8XOLL_4sjA9R4I4_Zdpb_BCJno</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Peng, Chen</creator><creator>Chen, Qiong</creator><creator>Tan, Shangjin</creator><creator>Shen, Xiaotao</creator><creator>Jiang, Chao</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0260-7271</orcidid></search><sort><creationdate>20240327</creationdate><title>Generalized reporter score-based enrichment analysis for omics data</title><author>Peng, Chen ; Chen, Qiong ; Tan, Shangjin ; Shen, Xiaotao ; Jiang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1becf8c22d339ff4a0a5f812d4dafb7d62367b896d0ce9c6024fc3060c7dc4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarking</topic><topic>Biomedical Research</topic><topic>Databases, Factual</topic><topic>Enrichment</topic><topic>Medical research</topic><topic>Metabolome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Problem Solving Protocol</topic><topic>Taxonomy</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Chen, Qiong</creatorcontrib><creatorcontrib>Tan, Shangjin</creatorcontrib><creatorcontrib>Shen, Xiaotao</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Chen</au><au>Chen, Qiong</au><au>Tan, Shangjin</au><au>Shen, Xiaotao</au><au>Jiang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized reporter score-based enrichment analysis for omics data</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>25</volume><issue>3</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
Enrichment analysis contextualizes biological features in pathways to facilitate a systematic understanding of high-dimensional data and is widely used in biomedical research. The emerging reporter score-based analysis (RSA) method shows more promising sensitivity, as it relies on P-values instead of raw values of features. However, RSA cannot be directly applied to multi-group and longitudinal experimental designs and is often misused due to the lack of a proper tool. Here, we propose the Generalized Reporter Score-based Analysis (GRSA) method for multi-group and longitudinal omics data. A comparison with other popular enrichment analysis methods demonstrated that GRSA had increased sensitivity across multiple benchmark datasets. We applied GRSA to microbiome, transcriptome and metabolome data and discovered new biological insights in omics studies. Finally, we demonstrated the application of GRSA beyond functional enrichment using a taxonomy database. We implemented GRSA in an R package, ReporterScore, integrating with a powerful visualization module and updatable pathway databases, which is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/ReporterScore). We believe that the ReporterScore package will be a valuable asset for broad biomedical research fields.
Graphical Abstract
Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38546324</pmid><doi>10.1093/bib/bbae116</doi><orcidid>https://orcid.org/0000-0003-0260-7271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2024-03, Vol.25 (3) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976918 |
source | Oxford Journals Open Access Collection; MEDLINE; PubMed Central |
subjects | Benchmarking Biomedical Research Databases, Factual Enrichment Medical research Metabolome Microbiomes Microbiota Problem Solving Protocol Taxonomy Transcriptomes |
title | Generalized reporter score-based enrichment analysis for omics data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20reporter%20score-based%20enrichment%20analysis%20for%20omics%20data&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Peng,%20Chen&rft.date=2024-03-27&rft.volume=25&rft.issue=3&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae116&rft_dat=%3Cproquest_pubme%3E3014006771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039812311&rft_id=info:pmid/38546324&rft_oup_id=10.1093/bib/bbae116&rfr_iscdi=true |