Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis
Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in A...
Gespeichert in:
Veröffentlicht in: | Journal of rheumatic diseases 2024-04, Vol.31 (2), p.97-107 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | 2 |
container_start_page | 97 |
container_title | Journal of rheumatic diseases |
container_volume | 31 |
creator | Koo, Bon San Jang, Miso Oh, Ji Seon Shin, Keewon Lee, Seunghun Joo, Kyung Bin Kim, Namkug Kim, Tae-Hwan |
description | Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs).
EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1-mSASSSn)/(Tn+1-Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation.
The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase.
Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression. |
doi_str_mv | 10.4078/jrd.2023.0056 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10973352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38559800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-38b7788d493f67bc675b835fa8ce210439dc43cd6b4dbf8bff5463e8d1f707543</originalsourceid><addsrcrecordid>eNpVkdtKJDEQhoO4qMx66a3kBXpMd5JO-kpEdFdQvHHBu5DOYaa0J2mS6DIv4HNvBg-sdVNFHf6_4EPopCVLRoQ8e0p22ZGOLgnh_R466jpKGyZauV9rMtBmYOTxEB3n_ERq9KRjnB-gQyo5HyQhR-jtTps1BIcnp1OAsMKbaN2U8V8oa1xg45rsEriMzQQBjJ6wd7q8pNopEc_JWTAFJ20hrpKe12Bqs5YuZ4gBQ8CzLuBC-ZDU4Xk7xbxzynMMdjtBgfwT_fB6yu74Iy_Qn-urh8vfze39r5vLi9vGUMZKQ-UohJSWDdT3YjS94KOk3GtpXNcSRgdrGDW2H5kdvRy956ynTtrWCyI4owt0_q47v4wbZ039K-lJzQk2Om1V1KC-TwKs1Sq-qpYMglLeVYXmXcGkmHNy_uu4JWoHRVUoagdF7aDU_dP_Hb-2PxHQf7qljbs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis</title><source>KoreaMed Synapse</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Koo, Bon San ; Jang, Miso ; Oh, Ji Seon ; Shin, Keewon ; Lee, Seunghun ; Joo, Kyung Bin ; Kim, Namkug ; Kim, Tae-Hwan</creator><creatorcontrib>Koo, Bon San ; Jang, Miso ; Oh, Ji Seon ; Shin, Keewon ; Lee, Seunghun ; Joo, Kyung Bin ; Kim, Namkug ; Kim, Tae-Hwan</creatorcontrib><description>Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs).
EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1-mSASSSn)/(Tn+1-Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation.
The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase.
Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression.</description><identifier>ISSN: 2093-940X</identifier><identifier>EISSN: 2233-4718</identifier><identifier>DOI: 10.4078/jrd.2023.0056</identifier><identifier>PMID: 38559800</identifier><language>eng</language><publisher>Korea (South): Korean College of Rheumatology</publisher><subject>Original</subject><ispartof>Journal of rheumatic diseases, 2024-04, Vol.31 (2), p.97-107</ispartof><rights>Copyright © 2024 by The Korean College of Rheumatology. All rights reserved.</rights><rights>Copyright © 2024 by The Korean College of Rheumatology. All rights reserved. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-38b7788d493f67bc675b835fa8ce210439dc43cd6b4dbf8bff5463e8d1f707543</cites><orcidid>0009-0004-1598-1670 ; 0000-0002-5028-5716 ; 0000-0002-0205-6492 ; 0000-0002-4348-7993 ; 0000-0002-3542-2276 ; 0000-0002-4212-2634 ; 0000-0003-4409-411X ; 0000-0002-3438-2217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38559800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koo, Bon San</creatorcontrib><creatorcontrib>Jang, Miso</creatorcontrib><creatorcontrib>Oh, Ji Seon</creatorcontrib><creatorcontrib>Shin, Keewon</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Joo, Kyung Bin</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><title>Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis</title><title>Journal of rheumatic diseases</title><addtitle>J Rheum Dis</addtitle><description>Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs).
EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1-mSASSSn)/(Tn+1-Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation.
The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase.
Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression.</description><subject>Original</subject><issn>2093-940X</issn><issn>2233-4718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkdtKJDEQhoO4qMx66a3kBXpMd5JO-kpEdFdQvHHBu5DOYaa0J2mS6DIv4HNvBg-sdVNFHf6_4EPopCVLRoQ8e0p22ZGOLgnh_R466jpKGyZauV9rMtBmYOTxEB3n_ERq9KRjnB-gQyo5HyQhR-jtTps1BIcnp1OAsMKbaN2U8V8oa1xg45rsEriMzQQBjJ6wd7q8pNopEc_JWTAFJ20hrpKe12Bqs5YuZ4gBQ8CzLuBC-ZDU4Xk7xbxzynMMdjtBgfwT_fB6yu74Iy_Qn-urh8vfze39r5vLi9vGUMZKQ-UohJSWDdT3YjS94KOk3GtpXNcSRgdrGDW2H5kdvRy956ynTtrWCyI4owt0_q47v4wbZ039K-lJzQk2Om1V1KC-TwKs1Sq-qpYMglLeVYXmXcGkmHNy_uu4JWoHRVUoagdF7aDU_dP_Hb-2PxHQf7qljbs</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Koo, Bon San</creator><creator>Jang, Miso</creator><creator>Oh, Ji Seon</creator><creator>Shin, Keewon</creator><creator>Lee, Seunghun</creator><creator>Joo, Kyung Bin</creator><creator>Kim, Namkug</creator><creator>Kim, Tae-Hwan</creator><general>Korean College of Rheumatology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-1598-1670</orcidid><orcidid>https://orcid.org/0000-0002-5028-5716</orcidid><orcidid>https://orcid.org/0000-0002-0205-6492</orcidid><orcidid>https://orcid.org/0000-0002-4348-7993</orcidid><orcidid>https://orcid.org/0000-0002-3542-2276</orcidid><orcidid>https://orcid.org/0000-0002-4212-2634</orcidid><orcidid>https://orcid.org/0000-0003-4409-411X</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid></search><sort><creationdate>20240401</creationdate><title>Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis</title><author>Koo, Bon San ; Jang, Miso ; Oh, Ji Seon ; Shin, Keewon ; Lee, Seunghun ; Joo, Kyung Bin ; Kim, Namkug ; Kim, Tae-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-38b7788d493f67bc675b835fa8ce210439dc43cd6b4dbf8bff5463e8d1f707543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Bon San</creatorcontrib><creatorcontrib>Jang, Miso</creatorcontrib><creatorcontrib>Oh, Ji Seon</creatorcontrib><creatorcontrib>Shin, Keewon</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Joo, Kyung Bin</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of rheumatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koo, Bon San</au><au>Jang, Miso</au><au>Oh, Ji Seon</au><au>Shin, Keewon</au><au>Lee, Seunghun</au><au>Joo, Kyung Bin</au><au>Kim, Namkug</au><au>Kim, Tae-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis</atitle><jtitle>Journal of rheumatic diseases</jtitle><addtitle>J Rheum Dis</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><spage>97</spage><epage>107</epage><pages>97-107</pages><issn>2093-940X</issn><eissn>2233-4718</eissn><abstract>Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs).
EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1-mSASSSn)/(Tn+1-Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation.
The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase.
Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression.</abstract><cop>Korea (South)</cop><pub>Korean College of Rheumatology</pub><pmid>38559800</pmid><doi>10.4078/jrd.2023.0056</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-1598-1670</orcidid><orcidid>https://orcid.org/0000-0002-5028-5716</orcidid><orcidid>https://orcid.org/0000-0002-0205-6492</orcidid><orcidid>https://orcid.org/0000-0002-4348-7993</orcidid><orcidid>https://orcid.org/0000-0002-3542-2276</orcidid><orcidid>https://orcid.org/0000-0002-4212-2634</orcidid><orcidid>https://orcid.org/0000-0003-4409-411X</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2093-940X |
ispartof | Journal of rheumatic diseases, 2024-04, Vol.31 (2), p.97-107 |
issn | 2093-940X 2233-4718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10973352 |
source | KoreaMed Synapse; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Original |
title | Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20models%20with%20time-series%20clinical%20features%20to%20predict%20radiographic%20progression%20in%20patients%20with%20ankylosing%20spondylitis&rft.jtitle=Journal%20of%20rheumatic%20diseases&rft.au=Koo,%20Bon%20San&rft.date=2024-04-01&rft.volume=31&rft.issue=2&rft.spage=97&rft.epage=107&rft.pages=97-107&rft.issn=2093-940X&rft.eissn=2233-4718&rft_id=info:doi/10.4078/jrd.2023.0056&rft_dat=%3Cpubmed_cross%3E38559800%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38559800&rfr_iscdi=true |