Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots

The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-03, Vol.17 (6), p.1409
Hauptverfasser: Guo, Guanhua, Yao, Ting, Liu, Wensheng, Tang, Sai, Xiao, Daihong, Huang, Lanping, Wu, Lei, Feng, Zhaohui, Gao, Xiaobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1409
container_title Materials
container_volume 17
creator Guo, Guanhua
Yao, Ting
Liu, Wensheng
Tang, Sai
Xiao, Daihong
Huang, Lanping
Wu, Lei
Feng, Zhaohui
Gao, Xiaobing
description The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.
doi_str_mv 10.3390/ma17061409
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10971882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788250407</galeid><sourcerecordid>A788250407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</originalsourceid><addsrcrecordid>eNpdkltvFSEQx4nR2Kb2xQ9gSHwxJlthWdjlyZwcb02Ol6T6TFh22EPDpcKuxm8v7am1Cg9MmN_8hxkGoaeUnDEmyaugaU8E7Yh8gI6plKKhsuse3rOP0Gkpl6QuxujQysfoiA28o1x0x-jnpzVAdkZ7fOHC6vXiUsQ6TvijNnsXAe9A5-jijL9kmJy58SeLlz3gNy6DWfB277zHW12WA5YMlHLN7HSeobmo4oA3fg0urgGfxzkt5Ql6ZLUvcHp7nqBv795-3X5odp_fn283u8Z0hC8Nh95wocUIdrQwwWQYkaKVRo7QkhamgVjB7dCDlqOdJGFW0l62XDAzETmwE_T6oHu1jqGGQ1yy9uoqu6DzL5W0U_96oturOf1QlMieDkNbFV7cKuT0fYWyqOCKAe91hLQWxUhtfoU5r-jz_9DLtOZY66tU7T6TgvSVOjtQc-2LctGmmtjUPUFwJkWwrt5v-pqck-4m4OUhwORUSgZ793xK1PUQqL9DUOFn9wu-Q_98OfsNkmGtZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003339607</pqid></control><display><type>article</type><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</creator><creatorcontrib>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</creatorcontrib><description>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17061409</identifier><identifier>PMID: 38541564</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum alloys ; Aluminum base alloys ; Aluminum products ; Analysis ; Casting ; Casting defects ; Casting machines ; Cooling ; Crystal defects ; Direct chill casting ; Evolution ; Finite volume method ; Grain structure ; Heat ; Ingot casting ; Ingots ; Machine learning ; Mathematical models ; Model accuracy ; Mushy zones ; Numerical analysis ; Parameters ; Phase transitions ; Physics ; Recipes ; Residual stress ; Simulation ; Simulation methods ; Solidification ; Solids ; Temperature ; Velocity ; Viscosity ; Water flow</subject><ispartof>Materials, 2024-03, Vol.17 (6), p.1409</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</cites><orcidid>0000-0001-5025-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971882/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971882/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38541564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Guanhua</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Liu, Wensheng</creatorcontrib><creatorcontrib>Tang, Sai</creatorcontrib><creatorcontrib>Xiao, Daihong</creatorcontrib><creatorcontrib>Huang, Lanping</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Gao, Xiaobing</creatorcontrib><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</description><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Aluminum products</subject><subject>Analysis</subject><subject>Casting</subject><subject>Casting defects</subject><subject>Casting machines</subject><subject>Cooling</subject><subject>Crystal defects</subject><subject>Direct chill casting</subject><subject>Evolution</subject><subject>Finite volume method</subject><subject>Grain structure</subject><subject>Heat</subject><subject>Ingot casting</subject><subject>Ingots</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Mushy zones</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Recipes</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Solidification</subject><subject>Solids</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Water flow</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkltvFSEQx4nR2Kb2xQ9gSHwxJlthWdjlyZwcb02Ol6T6TFh22EPDpcKuxm8v7am1Cg9MmN_8hxkGoaeUnDEmyaugaU8E7Yh8gI6plKKhsuse3rOP0Gkpl6QuxujQysfoiA28o1x0x-jnpzVAdkZ7fOHC6vXiUsQ6TvijNnsXAe9A5-jijL9kmJy58SeLlz3gNy6DWfB277zHW12WA5YMlHLN7HSeobmo4oA3fg0urgGfxzkt5Ql6ZLUvcHp7nqBv795-3X5odp_fn283u8Z0hC8Nh95wocUIdrQwwWQYkaKVRo7QkhamgVjB7dCDlqOdJGFW0l62XDAzETmwE_T6oHu1jqGGQ1yy9uoqu6DzL5W0U_96oturOf1QlMieDkNbFV7cKuT0fYWyqOCKAe91hLQWxUhtfoU5r-jz_9DLtOZY66tU7T6TgvSVOjtQc-2LctGmmtjUPUFwJkWwrt5v-pqck-4m4OUhwORUSgZ793xK1PUQqL9DUOFn9wu-Q_98OfsNkmGtZg</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Guo, Guanhua</creator><creator>Yao, Ting</creator><creator>Liu, Wensheng</creator><creator>Tang, Sai</creator><creator>Xiao, Daihong</creator><creator>Huang, Lanping</creator><creator>Wu, Lei</creator><creator>Feng, Zhaohui</creator><creator>Gao, Xiaobing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5025-7849</orcidid></search><sort><creationdate>20240319</creationdate><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><author>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Aluminum products</topic><topic>Analysis</topic><topic>Casting</topic><topic>Casting defects</topic><topic>Casting machines</topic><topic>Cooling</topic><topic>Crystal defects</topic><topic>Direct chill casting</topic><topic>Evolution</topic><topic>Finite volume method</topic><topic>Grain structure</topic><topic>Heat</topic><topic>Ingot casting</topic><topic>Ingots</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Mushy zones</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Recipes</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Solidification</topic><topic>Solids</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guanhua</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Liu, Wensheng</creatorcontrib><creatorcontrib>Tang, Sai</creatorcontrib><creatorcontrib>Xiao, Daihong</creatorcontrib><creatorcontrib>Huang, Lanping</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Gao, Xiaobing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guanhua</au><au>Yao, Ting</au><au>Liu, Wensheng</au><au>Tang, Sai</au><au>Xiao, Daihong</au><au>Huang, Lanping</au><au>Wu, Lei</au><au>Feng, Zhaohui</au><au>Gao, Xiaobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>1409</spage><pages>1409-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38541564</pmid><doi>10.3390/ma17061409</doi><orcidid>https://orcid.org/0000-0001-5025-7849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-03, Vol.17 (6), p.1409
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10971882
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Alloys
Aluminum alloys
Aluminum base alloys
Aluminum products
Analysis
Casting
Casting defects
Casting machines
Cooling
Crystal defects
Direct chill casting
Evolution
Finite volume method
Grain structure
Heat
Ingot casting
Ingots
Machine learning
Mathematical models
Model accuracy
Mushy zones
Numerical analysis
Parameters
Phase transitions
Physics
Recipes
Residual stress
Simulation
Simulation methods
Solidification
Solids
Temperature
Velocity
Viscosity
Water flow
title Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20and%20Machine%20Learning%20Prediction%20of%20the%20Direct%20Chill%20Casting%20Process%20of%20Large-Scale%20Aluminum%20Ingots&rft.jtitle=Materials&rft.au=Guo,%20Guanhua&rft.date=2024-03-19&rft.volume=17&rft.issue=6&rft.spage=1409&rft.pages=1409-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17061409&rft_dat=%3Cgale_pubme%3EA788250407%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003339607&rft_id=info:pmid/38541564&rft_galeid=A788250407&rfr_iscdi=true