Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots
The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computationa...
Gespeichert in:
Veröffentlicht in: | Materials 2024-03, Vol.17 (6), p.1409 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1409 |
container_title | Materials |
container_volume | 17 |
creator | Guo, Guanhua Yao, Ting Liu, Wensheng Tang, Sai Xiao, Daihong Huang, Lanping Wu, Lei Feng, Zhaohui Gao, Xiaobing |
description | The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects. |
doi_str_mv | 10.3390/ma17061409 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10971882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788250407</galeid><sourcerecordid>A788250407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</originalsourceid><addsrcrecordid>eNpdkltvFSEQx4nR2Kb2xQ9gSHwxJlthWdjlyZwcb02Ol6T6TFh22EPDpcKuxm8v7am1Cg9MmN_8hxkGoaeUnDEmyaugaU8E7Yh8gI6plKKhsuse3rOP0Gkpl6QuxujQysfoiA28o1x0x-jnpzVAdkZ7fOHC6vXiUsQ6TvijNnsXAe9A5-jijL9kmJy58SeLlz3gNy6DWfB277zHW12WA5YMlHLN7HSeobmo4oA3fg0urgGfxzkt5Ql6ZLUvcHp7nqBv795-3X5odp_fn283u8Z0hC8Nh95wocUIdrQwwWQYkaKVRo7QkhamgVjB7dCDlqOdJGFW0l62XDAzETmwE_T6oHu1jqGGQ1yy9uoqu6DzL5W0U_96oturOf1QlMieDkNbFV7cKuT0fYWyqOCKAe91hLQWxUhtfoU5r-jz_9DLtOZY66tU7T6TgvSVOjtQc-2LctGmmtjUPUFwJkWwrt5v-pqck-4m4OUhwORUSgZ793xK1PUQqL9DUOFn9wu-Q_98OfsNkmGtZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003339607</pqid></control><display><type>article</type><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</creator><creatorcontrib>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</creatorcontrib><description>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17061409</identifier><identifier>PMID: 38541564</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum alloys ; Aluminum base alloys ; Aluminum products ; Analysis ; Casting ; Casting defects ; Casting machines ; Cooling ; Crystal defects ; Direct chill casting ; Evolution ; Finite volume method ; Grain structure ; Heat ; Ingot casting ; Ingots ; Machine learning ; Mathematical models ; Model accuracy ; Mushy zones ; Numerical analysis ; Parameters ; Phase transitions ; Physics ; Recipes ; Residual stress ; Simulation ; Simulation methods ; Solidification ; Solids ; Temperature ; Velocity ; Viscosity ; Water flow</subject><ispartof>Materials, 2024-03, Vol.17 (6), p.1409</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</cites><orcidid>0000-0001-5025-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971882/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971882/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38541564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Guanhua</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Liu, Wensheng</creatorcontrib><creatorcontrib>Tang, Sai</creatorcontrib><creatorcontrib>Xiao, Daihong</creatorcontrib><creatorcontrib>Huang, Lanping</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Gao, Xiaobing</creatorcontrib><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</description><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Aluminum products</subject><subject>Analysis</subject><subject>Casting</subject><subject>Casting defects</subject><subject>Casting machines</subject><subject>Cooling</subject><subject>Crystal defects</subject><subject>Direct chill casting</subject><subject>Evolution</subject><subject>Finite volume method</subject><subject>Grain structure</subject><subject>Heat</subject><subject>Ingot casting</subject><subject>Ingots</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Mushy zones</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Recipes</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Solidification</subject><subject>Solids</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Water flow</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkltvFSEQx4nR2Kb2xQ9gSHwxJlthWdjlyZwcb02Ol6T6TFh22EPDpcKuxm8v7am1Cg9MmN_8hxkGoaeUnDEmyaugaU8E7Yh8gI6plKKhsuse3rOP0Gkpl6QuxujQysfoiA28o1x0x-jnpzVAdkZ7fOHC6vXiUsQ6TvijNnsXAe9A5-jijL9kmJy58SeLlz3gNy6DWfB277zHW12WA5YMlHLN7HSeobmo4oA3fg0urgGfxzkt5Ql6ZLUvcHp7nqBv795-3X5odp_fn283u8Z0hC8Nh95wocUIdrQwwWQYkaKVRo7QkhamgVjB7dCDlqOdJGFW0l62XDAzETmwE_T6oHu1jqGGQ1yy9uoqu6DzL5W0U_96oturOf1QlMieDkNbFV7cKuT0fYWyqOCKAe91hLQWxUhtfoU5r-jz_9DLtOZY66tU7T6TgvSVOjtQc-2LctGmmtjUPUFwJkWwrt5v-pqck-4m4OUhwORUSgZ793xK1PUQqL9DUOFn9wu-Q_98OfsNkmGtZg</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Guo, Guanhua</creator><creator>Yao, Ting</creator><creator>Liu, Wensheng</creator><creator>Tang, Sai</creator><creator>Xiao, Daihong</creator><creator>Huang, Lanping</creator><creator>Wu, Lei</creator><creator>Feng, Zhaohui</creator><creator>Gao, Xiaobing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5025-7849</orcidid></search><sort><creationdate>20240319</creationdate><title>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</title><author>Guo, Guanhua ; Yao, Ting ; Liu, Wensheng ; Tang, Sai ; Xiao, Daihong ; Huang, Lanping ; Wu, Lei ; Feng, Zhaohui ; Gao, Xiaobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5e7c56a6befbfededc309629c9be202ed80f65f87ea9bfd903f91792563cd0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Aluminum products</topic><topic>Analysis</topic><topic>Casting</topic><topic>Casting defects</topic><topic>Casting machines</topic><topic>Cooling</topic><topic>Crystal defects</topic><topic>Direct chill casting</topic><topic>Evolution</topic><topic>Finite volume method</topic><topic>Grain structure</topic><topic>Heat</topic><topic>Ingot casting</topic><topic>Ingots</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Mushy zones</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Recipes</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Solidification</topic><topic>Solids</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guanhua</creatorcontrib><creatorcontrib>Yao, Ting</creatorcontrib><creatorcontrib>Liu, Wensheng</creatorcontrib><creatorcontrib>Tang, Sai</creatorcontrib><creatorcontrib>Xiao, Daihong</creatorcontrib><creatorcontrib>Huang, Lanping</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Gao, Xiaobing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guanhua</au><au>Yao, Ting</au><au>Liu, Wensheng</au><au>Tang, Sai</au><au>Xiao, Daihong</au><au>Huang, Lanping</au><au>Wu, Lei</au><au>Feng, Zhaohui</au><au>Gao, Xiaobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>1409</spage><pages>1409-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38541564</pmid><doi>10.3390/ma17061409</doi><orcidid>https://orcid.org/0000-0001-5025-7849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-03, Vol.17 (6), p.1409 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10971882 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Alloys Aluminum alloys Aluminum base alloys Aluminum products Analysis Casting Casting defects Casting machines Cooling Crystal defects Direct chill casting Evolution Finite volume method Grain structure Heat Ingot casting Ingots Machine learning Mathematical models Model accuracy Mushy zones Numerical analysis Parameters Phase transitions Physics Recipes Residual stress Simulation Simulation methods Solidification Solids Temperature Velocity Viscosity Water flow |
title | Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20and%20Machine%20Learning%20Prediction%20of%20the%20Direct%20Chill%20Casting%20Process%20of%20Large-Scale%20Aluminum%20Ingots&rft.jtitle=Materials&rft.au=Guo,%20Guanhua&rft.date=2024-03-19&rft.volume=17&rft.issue=6&rft.spage=1409&rft.pages=1409-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17061409&rft_dat=%3Cgale_pubme%3EA788250407%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003339607&rft_id=info:pmid/38541564&rft_galeid=A788250407&rfr_iscdi=true |