Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method

Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2024-03, Vol.15 (3), p.342
Hauptverfasser: Barseghyan, Hayk, Eisenreich, Doris, Lindt, Evgenia, Wendlandt, Martin, Scharf, Florentine, Benet-Pages, Anna, Sendelbach, Kai, Neuhann, Teresa, Abicht, Angela, Holinski-Feder, Elke, Koehler, Udo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 342
container_title Genes
container_volume 15
creator Barseghyan, Hayk
Eisenreich, Doris
Lindt, Evgenia
Wendlandt, Martin
Scharf, Florentine
Benet-Pages, Anna
Sendelbach, Kai
Neuhann, Teresa
Abicht, Angela
Holinski-Feder, Elke
Koehler, Udo
description Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the gene due to a balanced reciprocal translocation; (2) disruption of the gene due to an inverted insertion; (3) disruption of the gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.
doi_str_mv 10.3390/genes15030342
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10970541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788247503</galeid><sourcerecordid>A788247503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f9f032d17deef7ac43f88f2ba3407547998356dae92a318c817490db0baf065a3</originalsourceid><addsrcrecordid>eNptkU1v1DAQhiMEolXpkSuKxIVLythj184JVVtokVoVIThbXmecukrsECdI_HtcWlZdhH3wxzzz2jNvVb1mcILYwvueImUmAQEFf1YdclDYCMHl8yf7g-o45zsoQwAHkC-rA9RSlBM7rC5vpiU4O9QXFNNI9bWdphD72uba1l_SQnEJJfo1rUuIVG-GEP_g58H2MeWSW1_Tcpu6V9ULb4dMx4_rUfX908dvm8vm6ubi8-bsqnFC49L41gPyjqmOyCvrBHqtPd9aFKCkUG2rUZ52llpukWmnmRItdFvYWg-n0uJR9eFBd1q3I3WufHC2g5nmMNr5l0k2mP1IDLemTz8Ng1aBFKwovHtUmNOPlfJixpAdDYONlNZsEFhpDaJqC_r2H_QurXMs9RUKmOTIC7ijejuQCdGn8rC7FzVnSmsuVHGoUCf_ocrsaAwuRfKh3O8lNA8Jbk45z-R3RTIw9_abPfsL_-ZpZ3b0X7PxNyHoqO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3001523213</pqid></control><display><type>article</type><title>Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Barseghyan, Hayk ; Eisenreich, Doris ; Lindt, Evgenia ; Wendlandt, Martin ; Scharf, Florentine ; Benet-Pages, Anna ; Sendelbach, Kai ; Neuhann, Teresa ; Abicht, Angela ; Holinski-Feder, Elke ; Koehler, Udo</creator><creatorcontrib>Barseghyan, Hayk ; Eisenreich, Doris ; Lindt, Evgenia ; Wendlandt, Martin ; Scharf, Florentine ; Benet-Pages, Anna ; Sendelbach, Kai ; Neuhann, Teresa ; Abicht, Angela ; Holinski-Feder, Elke ; Koehler, Udo</creatorcontrib><description>Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the gene due to a balanced reciprocal translocation; (2) disruption of the gene due to an inverted insertion; (3) disruption of the gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes15030342</identifier><identifier>PMID: 38540401</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Breakpoints ; Carrier Proteins ; Centromere ; Chromosome Mapping ; Chromosomes ; Copy number ; Diagnostic equipment (Medical) ; DNA microarrays ; Gene deletion ; Gene mapping ; Genes ; Genetic disorders ; Genetic Markers ; Genomes ; Genomics ; Haplotypes ; Humans ; Labeling ; Methods ; Microarray Analysis ; Muscular dystrophy ; Nbea gene ; Nerve Tissue Proteins ; Patients ; Translocation, Genetic - genetics ; TSC2 gene</subject><ispartof>Genes, 2024-03, Vol.15 (3), p.342</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f9f032d17deef7ac43f88f2ba3407547998356dae92a318c817490db0baf065a3</citedby><cites>FETCH-LOGICAL-c483t-f9f032d17deef7ac43f88f2ba3407547998356dae92a318c817490db0baf065a3</cites><orcidid>0000-0002-5172-2818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970541/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970541/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38540401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barseghyan, Hayk</creatorcontrib><creatorcontrib>Eisenreich, Doris</creatorcontrib><creatorcontrib>Lindt, Evgenia</creatorcontrib><creatorcontrib>Wendlandt, Martin</creatorcontrib><creatorcontrib>Scharf, Florentine</creatorcontrib><creatorcontrib>Benet-Pages, Anna</creatorcontrib><creatorcontrib>Sendelbach, Kai</creatorcontrib><creatorcontrib>Neuhann, Teresa</creatorcontrib><creatorcontrib>Abicht, Angela</creatorcontrib><creatorcontrib>Holinski-Feder, Elke</creatorcontrib><creatorcontrib>Koehler, Udo</creatorcontrib><title>Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the gene due to a balanced reciprocal translocation; (2) disruption of the gene due to an inverted insertion; (3) disruption of the gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.</description><subject>Breakpoints</subject><subject>Carrier Proteins</subject><subject>Centromere</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Copy number</subject><subject>Diagnostic equipment (Medical)</subject><subject>DNA microarrays</subject><subject>Gene deletion</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Genetic Markers</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Labeling</subject><subject>Methods</subject><subject>Microarray Analysis</subject><subject>Muscular dystrophy</subject><subject>Nbea gene</subject><subject>Nerve Tissue Proteins</subject><subject>Patients</subject><subject>Translocation, Genetic - genetics</subject><subject>TSC2 gene</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1v1DAQhiMEolXpkSuKxIVLythj184JVVtokVoVIThbXmecukrsECdI_HtcWlZdhH3wxzzz2jNvVb1mcILYwvueImUmAQEFf1YdclDYCMHl8yf7g-o45zsoQwAHkC-rA9RSlBM7rC5vpiU4O9QXFNNI9bWdphD72uba1l_SQnEJJfo1rUuIVG-GEP_g58H2MeWSW1_Tcpu6V9ULb4dMx4_rUfX908dvm8vm6ubi8-bsqnFC49L41gPyjqmOyCvrBHqtPd9aFKCkUG2rUZ52llpukWmnmRItdFvYWg-n0uJR9eFBd1q3I3WufHC2g5nmMNr5l0k2mP1IDLemTz8Ng1aBFKwovHtUmNOPlfJixpAdDYONlNZsEFhpDaJqC_r2H_QurXMs9RUKmOTIC7ijejuQCdGn8rC7FzVnSmsuVHGoUCf_ocrsaAwuRfKh3O8lNA8Jbk45z-R3RTIw9_abPfsL_-ZpZ3b0X7PxNyHoqO4</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Barseghyan, Hayk</creator><creator>Eisenreich, Doris</creator><creator>Lindt, Evgenia</creator><creator>Wendlandt, Martin</creator><creator>Scharf, Florentine</creator><creator>Benet-Pages, Anna</creator><creator>Sendelbach, Kai</creator><creator>Neuhann, Teresa</creator><creator>Abicht, Angela</creator><creator>Holinski-Feder, Elke</creator><creator>Koehler, Udo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5172-2818</orcidid></search><sort><creationdate>20240307</creationdate><title>Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method</title><author>Barseghyan, Hayk ; Eisenreich, Doris ; Lindt, Evgenia ; Wendlandt, Martin ; Scharf, Florentine ; Benet-Pages, Anna ; Sendelbach, Kai ; Neuhann, Teresa ; Abicht, Angela ; Holinski-Feder, Elke ; Koehler, Udo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f9f032d17deef7ac43f88f2ba3407547998356dae92a318c817490db0baf065a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Breakpoints</topic><topic>Carrier Proteins</topic><topic>Centromere</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Copy number</topic><topic>Diagnostic equipment (Medical)</topic><topic>DNA microarrays</topic><topic>Gene deletion</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Genetic Markers</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Labeling</topic><topic>Methods</topic><topic>Microarray Analysis</topic><topic>Muscular dystrophy</topic><topic>Nbea gene</topic><topic>Nerve Tissue Proteins</topic><topic>Patients</topic><topic>Translocation, Genetic - genetics</topic><topic>TSC2 gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barseghyan, Hayk</creatorcontrib><creatorcontrib>Eisenreich, Doris</creatorcontrib><creatorcontrib>Lindt, Evgenia</creatorcontrib><creatorcontrib>Wendlandt, Martin</creatorcontrib><creatorcontrib>Scharf, Florentine</creatorcontrib><creatorcontrib>Benet-Pages, Anna</creatorcontrib><creatorcontrib>Sendelbach, Kai</creatorcontrib><creatorcontrib>Neuhann, Teresa</creatorcontrib><creatorcontrib>Abicht, Angela</creatorcontrib><creatorcontrib>Holinski-Feder, Elke</creatorcontrib><creatorcontrib>Koehler, Udo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barseghyan, Hayk</au><au>Eisenreich, Doris</au><au>Lindt, Evgenia</au><au>Wendlandt, Martin</au><au>Scharf, Florentine</au><au>Benet-Pages, Anna</au><au>Sendelbach, Kai</au><au>Neuhann, Teresa</au><au>Abicht, Angela</au><au>Holinski-Feder, Elke</au><au>Koehler, Udo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>342</spage><pages>342-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the gene due to a balanced reciprocal translocation; (2) disruption of the gene due to an inverted insertion; (3) disruption of the gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38540401</pmid><doi>10.3390/genes15030342</doi><orcidid>https://orcid.org/0000-0002-5172-2818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2024-03, Vol.15 (3), p.342
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10970541
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Breakpoints
Carrier Proteins
Centromere
Chromosome Mapping
Chromosomes
Copy number
Diagnostic equipment (Medical)
DNA microarrays
Gene deletion
Gene mapping
Genes
Genetic disorders
Genetic Markers
Genomes
Genomics
Haplotypes
Humans
Labeling
Methods
Microarray Analysis
Muscular dystrophy
Nbea gene
Nerve Tissue Proteins
Patients
Translocation, Genetic - genetics
TSC2 gene
title Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Genome%20Mapping%20as%20a%20Potential%20Routine%20Clinical%20Diagnostic%20Method&rft.jtitle=Genes&rft.au=Barseghyan,%20Hayk&rft.date=2024-03-07&rft.volume=15&rft.issue=3&rft.spage=342&rft.pages=342-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes15030342&rft_dat=%3Cgale_pubme%3EA788247503%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3001523213&rft_id=info:pmid/38540401&rft_galeid=A788247503&rfr_iscdi=true