Case weighted power priors for hybrid control analyses with time-to-event data
We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasure...
Gespeichert in:
Veröffentlicht in: | Biometrics 2024-03, Vol.80 (2) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Biometrics |
container_volume | 80 |
creator | Kwiatkowski, Evan Zhu, Jiawen Li, Xiao Pang, Herbert Lieberman, Grazyna Psioda, Matthew A |
description | We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population. |
doi_str_mv | 10.1093/biomtc/ujae019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10968526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014010023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</originalsourceid><addsrcrecordid>eNpVUcFOGzEQtRAIAu21R-Qjl4Xx2mtnT1UVFaiEygWk3qxZ72ziaHcdbIcof9-tkqL2NBrNm_ee3mPsi4BbAbW8a3wYsrvbrpFA1CdsJiolClAlnLIZAOhCKvHrgl2mtJ7WuoLynF3IeSW1UWbGfi4wEd-RX64ytXwTdhT5JvoQE-9C5Kt9E33LXRhzDD3HEft9osR3Pq949gMVORT0TmPmLWb8xM467BN9Ps4r9nr__WXxWDw9P_xYfHsqnFQ6F42RupujqlE6A9hUCkvjQDvTAlJbo1FQzakujRFaoxMIbUkT0KimdaaTV-zrgXezbQZq3aQfsbeT8QHj3gb09v_L6Fd2Gd7tFJqeV6WeGG6ODDG8bSllO_jkqO9xpLBNVoJQIABKOUFvD1AXQ0qRug8dAX8IpT20YI8tTA_X_7r7gP-NXf4G41iH6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014010023</pqid></control><display><type>article</type><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</creator><creatorcontrib>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</creatorcontrib><description>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</description><identifier>ISSN: 0006-341X</identifier><identifier>ISSN: 1541-0420</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1093/biomtc/ujae019</identifier><identifier>PMID: 38536747</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Biometric Practice ; Computer Simulation ; Humans ; Proportional Hazards Models ; Research Design</subject><ispartof>Biometrics, 2024-03, Vol.80 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</cites><orcidid>0000-0001-8398-8429 ; 0000-0002-4450-6981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38536747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwiatkowski, Evan</creatorcontrib><creatorcontrib>Zhu, Jiawen</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Pang, Herbert</creatorcontrib><creatorcontrib>Lieberman, Grazyna</creatorcontrib><creatorcontrib>Psioda, Matthew A</creatorcontrib><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</description><subject>Bayes Theorem</subject><subject>Biometric Practice</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Proportional Hazards Models</subject><subject>Research Design</subject><issn>0006-341X</issn><issn>1541-0420</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFOGzEQtRAIAu21R-Qjl4Xx2mtnT1UVFaiEygWk3qxZ72ziaHcdbIcof9-tkqL2NBrNm_ee3mPsi4BbAbW8a3wYsrvbrpFA1CdsJiolClAlnLIZAOhCKvHrgl2mtJ7WuoLynF3IeSW1UWbGfi4wEd-RX64ytXwTdhT5JvoQE-9C5Kt9E33LXRhzDD3HEft9osR3Pq949gMVORT0TmPmLWb8xM467BN9Ps4r9nr__WXxWDw9P_xYfHsqnFQ6F42RupujqlE6A9hUCkvjQDvTAlJbo1FQzakujRFaoxMIbUkT0KimdaaTV-zrgXezbQZq3aQfsbeT8QHj3gb09v_L6Fd2Gd7tFJqeV6WeGG6ODDG8bSllO_jkqO9xpLBNVoJQIABKOUFvD1AXQ0qRug8dAX8IpT20YI8tTA_X_7r7gP-NXf4G41iH6g</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Kwiatkowski, Evan</creator><creator>Zhu, Jiawen</creator><creator>Li, Xiao</creator><creator>Pang, Herbert</creator><creator>Lieberman, Grazyna</creator><creator>Psioda, Matthew A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8398-8429</orcidid><orcidid>https://orcid.org/0000-0002-4450-6981</orcidid></search><sort><creationdate>20240327</creationdate><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><author>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Biometric Practice</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Proportional Hazards Models</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiatkowski, Evan</creatorcontrib><creatorcontrib>Zhu, Jiawen</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Pang, Herbert</creatorcontrib><creatorcontrib>Lieberman, Grazyna</creatorcontrib><creatorcontrib>Psioda, Matthew A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiatkowski, Evan</au><au>Zhu, Jiawen</au><au>Li, Xiao</au><au>Pang, Herbert</au><au>Lieberman, Grazyna</au><au>Psioda, Matthew A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case weighted power priors for hybrid control analyses with time-to-event data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>80</volume><issue>2</issue><issn>0006-341X</issn><issn>1541-0420</issn><eissn>1541-0420</eissn><abstract>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38536747</pmid><doi>10.1093/biomtc/ujae019</doi><orcidid>https://orcid.org/0000-0001-8398-8429</orcidid><orcidid>https://orcid.org/0000-0002-4450-6981</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2024-03, Vol.80 (2) |
issn | 0006-341X 1541-0420 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10968526 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Bayes Theorem Biometric Practice Computer Simulation Humans Proportional Hazards Models Research Design |
title | Case weighted power priors for hybrid control analyses with time-to-event data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20weighted%20power%20priors%20for%20hybrid%20control%20analyses%20with%20time-to-event%20data&rft.jtitle=Biometrics&rft.au=Kwiatkowski,%20Evan&rft.date=2024-03-27&rft.volume=80&rft.issue=2&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1093/biomtc/ujae019&rft_dat=%3Cproquest_pubme%3E3014010023%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014010023&rft_id=info:pmid/38536747&rfr_iscdi=true |