Case weighted power priors for hybrid control analyses with time-to-event data

We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2024-03, Vol.80 (2)
Hauptverfasser: Kwiatkowski, Evan, Zhu, Jiawen, Li, Xiao, Pang, Herbert, Lieberman, Grazyna, Psioda, Matthew A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Biometrics
container_volume 80
creator Kwiatkowski, Evan
Zhu, Jiawen
Li, Xiao
Pang, Herbert
Lieberman, Grazyna
Psioda, Matthew A
description We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.
doi_str_mv 10.1093/biomtc/ujae019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10968526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014010023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</originalsourceid><addsrcrecordid>eNpVUcFOGzEQtRAIAu21R-Qjl4Xx2mtnT1UVFaiEygWk3qxZ72ziaHcdbIcof9-tkqL2NBrNm_ee3mPsi4BbAbW8a3wYsrvbrpFA1CdsJiolClAlnLIZAOhCKvHrgl2mtJ7WuoLynF3IeSW1UWbGfi4wEd-RX64ytXwTdhT5JvoQE-9C5Kt9E33LXRhzDD3HEft9osR3Pq949gMVORT0TmPmLWb8xM467BN9Ps4r9nr__WXxWDw9P_xYfHsqnFQ6F42RupujqlE6A9hUCkvjQDvTAlJbo1FQzakujRFaoxMIbUkT0KimdaaTV-zrgXezbQZq3aQfsbeT8QHj3gb09v_L6Fd2Gd7tFJqeV6WeGG6ODDG8bSllO_jkqO9xpLBNVoJQIABKOUFvD1AXQ0qRug8dAX8IpT20YI8tTA_X_7r7gP-NXf4G41iH6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014010023</pqid></control><display><type>article</type><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</creator><creatorcontrib>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</creatorcontrib><description>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</description><identifier>ISSN: 0006-341X</identifier><identifier>ISSN: 1541-0420</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1093/biomtc/ujae019</identifier><identifier>PMID: 38536747</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Biometric Practice ; Computer Simulation ; Humans ; Proportional Hazards Models ; Research Design</subject><ispartof>Biometrics, 2024-03, Vol.80 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</cites><orcidid>0000-0001-8398-8429 ; 0000-0002-4450-6981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38536747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwiatkowski, Evan</creatorcontrib><creatorcontrib>Zhu, Jiawen</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Pang, Herbert</creatorcontrib><creatorcontrib>Lieberman, Grazyna</creatorcontrib><creatorcontrib>Psioda, Matthew A</creatorcontrib><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</description><subject>Bayes Theorem</subject><subject>Biometric Practice</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Proportional Hazards Models</subject><subject>Research Design</subject><issn>0006-341X</issn><issn>1541-0420</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFOGzEQtRAIAu21R-Qjl4Xx2mtnT1UVFaiEygWk3qxZ72ziaHcdbIcof9-tkqL2NBrNm_ee3mPsi4BbAbW8a3wYsrvbrpFA1CdsJiolClAlnLIZAOhCKvHrgl2mtJ7WuoLynF3IeSW1UWbGfi4wEd-RX64ytXwTdhT5JvoQE-9C5Kt9E33LXRhzDD3HEft9osR3Pq949gMVORT0TmPmLWb8xM467BN9Ps4r9nr__WXxWDw9P_xYfHsqnFQ6F42RupujqlE6A9hUCkvjQDvTAlJbo1FQzakujRFaoxMIbUkT0KimdaaTV-zrgXezbQZq3aQfsbeT8QHj3gb09v_L6Fd2Gd7tFJqeV6WeGG6ODDG8bSllO_jkqO9xpLBNVoJQIABKOUFvD1AXQ0qRug8dAX8IpT20YI8tTA_X_7r7gP-NXf4G41iH6g</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Kwiatkowski, Evan</creator><creator>Zhu, Jiawen</creator><creator>Li, Xiao</creator><creator>Pang, Herbert</creator><creator>Lieberman, Grazyna</creator><creator>Psioda, Matthew A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8398-8429</orcidid><orcidid>https://orcid.org/0000-0002-4450-6981</orcidid></search><sort><creationdate>20240327</creationdate><title>Case weighted power priors for hybrid control analyses with time-to-event data</title><author>Kwiatkowski, Evan ; Zhu, Jiawen ; Li, Xiao ; Pang, Herbert ; Lieberman, Grazyna ; Psioda, Matthew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b736f8a49a3c70ab54a27c06c7d0aed9a74058e9277166ac1a0d2e0ab74bdc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Biometric Practice</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Proportional Hazards Models</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiatkowski, Evan</creatorcontrib><creatorcontrib>Zhu, Jiawen</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Pang, Herbert</creatorcontrib><creatorcontrib>Lieberman, Grazyna</creatorcontrib><creatorcontrib>Psioda, Matthew A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiatkowski, Evan</au><au>Zhu, Jiawen</au><au>Li, Xiao</au><au>Pang, Herbert</au><au>Lieberman, Grazyna</au><au>Psioda, Matthew A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case weighted power priors for hybrid control analyses with time-to-event data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>80</volume><issue>2</issue><issn>0006-341X</issn><issn>1541-0420</issn><eissn>1541-0420</eissn><abstract>We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38536747</pmid><doi>10.1093/biomtc/ujae019</doi><orcidid>https://orcid.org/0000-0001-8398-8429</orcidid><orcidid>https://orcid.org/0000-0002-4450-6981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2024-03, Vol.80 (2)
issn 0006-341X
1541-0420
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10968526
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Bayes Theorem
Biometric Practice
Computer Simulation
Humans
Proportional Hazards Models
Research Design
title Case weighted power priors for hybrid control analyses with time-to-event data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20weighted%20power%20priors%20for%20hybrid%20control%20analyses%20with%20time-to-event%20data&rft.jtitle=Biometrics&rft.au=Kwiatkowski,%20Evan&rft.date=2024-03-27&rft.volume=80&rft.issue=2&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1093/biomtc/ujae019&rft_dat=%3Cproquest_pubme%3E3014010023%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014010023&rft_id=info:pmid/38536747&rfr_iscdi=true