CAFA-evaluator: a Python tool for benchmarking ontological classification methods

We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics advances 2024, Vol.4 (1), p.vbae043-vbae043
Hauptverfasser: Piovesan, Damiano, Zago, Davide, Joshi, Parnal, De Paolis Kaluza, M Clara, Mehdiabadi, Mahta, Ramola, Rashika, Monzon, Alexander Miguel, Reade, Walter, Friedberg, Iddo, Radivojac, Predrag, Tosatto, Silvio C E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page vbae043
container_issue 1
container_start_page vbae043
container_title Bioinformatics advances
container_volume 4
creator Piovesan, Damiano
Zago, Davide
Joshi, Parnal
De Paolis Kaluza, M Clara
Mehdiabadi, Mahta
Ramola, Rashika
Monzon, Alexander Miguel
Reade, Walter
Friedberg, Iddo
Radivojac, Predrag
Tosatto, Silvio C E
description We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software. https://pypi.org/project/cafaeval.
doi_str_mv 10.1093/bioadv/vbae043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10965419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014005178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-57bacf8ed2340d248555da1db5f6580f9e1bcced7ea42f7de69cb62a8da04583</originalsourceid><addsrcrecordid>eNpVkc1LAzEQxYMottRePcoevWxNNsl-eJFSrAoFFXoPs0m2jWY3dZMu9L93S2uppxmYeb83vEHoluAJwQV9KI0D1T10JWjM6AUaJinlMcaMXJ71AzT2_gtjnGRZShi9RgOac8Zxng3R52w6n8a6A7uF4NrHCKKPXVi7JgrO2ahybVTqRq5raL9Ns4pcE5x1KyPBRtKC96bq-2B6Qa17nfI36KoC6_X4WEdoOX9ezl7jxfvL22y6iCVlaYh5VoKscq0SyrBKWM45V0BUyauU57gqNCml1CrTwJIqUzotZJkmkCvAjOd0hJ4O2M22rLWSugktWLFpTX_qTjgw4v-kMWuxcp3ok0s5I0VPuD8SWvez1T6I2niprYVGu60XFBOGMSfZ3mxyWJWt877V1cmH4D2QisMrxPEVveDu_LrT-l_w9Bc_04md</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3014005178</pqid></control><display><type>article</type><title>CAFA-evaluator: a Python tool for benchmarking ontological classification methods</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Piovesan, Damiano ; Zago, Davide ; Joshi, Parnal ; De Paolis Kaluza, M Clara ; Mehdiabadi, Mahta ; Ramola, Rashika ; Monzon, Alexander Miguel ; Reade, Walter ; Friedberg, Iddo ; Radivojac, Predrag ; Tosatto, Silvio C E</creator><contributor>Arighi, Cecilia</contributor><creatorcontrib>Piovesan, Damiano ; Zago, Davide ; Joshi, Parnal ; De Paolis Kaluza, M Clara ; Mehdiabadi, Mahta ; Ramola, Rashika ; Monzon, Alexander Miguel ; Reade, Walter ; Friedberg, Iddo ; Radivojac, Predrag ; Tosatto, Silvio C E ; Arighi, Cecilia</creatorcontrib><description>We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software. https://pypi.org/project/cafaeval.</description><identifier>ISSN: 2635-0041</identifier><identifier>EISSN: 2635-0041</identifier><identifier>DOI: 10.1093/bioadv/vbae043</identifier><identifier>PMID: 38545087</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Application Note</subject><ispartof>Bioinformatics advances, 2024, Vol.4 (1), p.vbae043-vbae043</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-57bacf8ed2340d248555da1db5f6580f9e1bcced7ea42f7de69cb62a8da04583</cites><orcidid>0000-0001-6689-3858 ; 0000-0002-6769-0793 ; 0000-0003-4525-7793 ; 0000-0001-8210-2390 ; 0000-0002-1789-8000 ; 0000-0003-0362-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38545087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Arighi, Cecilia</contributor><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Zago, Davide</creatorcontrib><creatorcontrib>Joshi, Parnal</creatorcontrib><creatorcontrib>De Paolis Kaluza, M Clara</creatorcontrib><creatorcontrib>Mehdiabadi, Mahta</creatorcontrib><creatorcontrib>Ramola, Rashika</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Reade, Walter</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><title>CAFA-evaluator: a Python tool for benchmarking ontological classification methods</title><title>Bioinformatics advances</title><addtitle>Bioinform Adv</addtitle><description>We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software. https://pypi.org/project/cafaeval.</description><subject>Application Note</subject><issn>2635-0041</issn><issn>2635-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LAzEQxYMottRePcoevWxNNsl-eJFSrAoFFXoPs0m2jWY3dZMu9L93S2uppxmYeb83vEHoluAJwQV9KI0D1T10JWjM6AUaJinlMcaMXJ71AzT2_gtjnGRZShi9RgOac8Zxng3R52w6n8a6A7uF4NrHCKKPXVi7JgrO2ahybVTqRq5raL9Ns4pcE5x1KyPBRtKC96bq-2B6Qa17nfI36KoC6_X4WEdoOX9ezl7jxfvL22y6iCVlaYh5VoKscq0SyrBKWM45V0BUyauU57gqNCml1CrTwJIqUzotZJkmkCvAjOd0hJ4O2M22rLWSugktWLFpTX_qTjgw4v-kMWuxcp3ok0s5I0VPuD8SWvez1T6I2niprYVGu60XFBOGMSfZ3mxyWJWt877V1cmH4D2QisMrxPEVveDu_LrT-l_w9Bc_04md</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Piovesan, Damiano</creator><creator>Zago, Davide</creator><creator>Joshi, Parnal</creator><creator>De Paolis Kaluza, M Clara</creator><creator>Mehdiabadi, Mahta</creator><creator>Ramola, Rashika</creator><creator>Monzon, Alexander Miguel</creator><creator>Reade, Walter</creator><creator>Friedberg, Iddo</creator><creator>Radivojac, Predrag</creator><creator>Tosatto, Silvio C E</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6689-3858</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid></search><sort><creationdate>2024</creationdate><title>CAFA-evaluator: a Python tool for benchmarking ontological classification methods</title><author>Piovesan, Damiano ; Zago, Davide ; Joshi, Parnal ; De Paolis Kaluza, M Clara ; Mehdiabadi, Mahta ; Ramola, Rashika ; Monzon, Alexander Miguel ; Reade, Walter ; Friedberg, Iddo ; Radivojac, Predrag ; Tosatto, Silvio C E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-57bacf8ed2340d248555da1db5f6580f9e1bcced7ea42f7de69cb62a8da04583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Application Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piovesan, Damiano</creatorcontrib><creatorcontrib>Zago, Davide</creatorcontrib><creatorcontrib>Joshi, Parnal</creatorcontrib><creatorcontrib>De Paolis Kaluza, M Clara</creatorcontrib><creatorcontrib>Mehdiabadi, Mahta</creatorcontrib><creatorcontrib>Ramola, Rashika</creatorcontrib><creatorcontrib>Monzon, Alexander Miguel</creatorcontrib><creatorcontrib>Reade, Walter</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Tosatto, Silvio C E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piovesan, Damiano</au><au>Zago, Davide</au><au>Joshi, Parnal</au><au>De Paolis Kaluza, M Clara</au><au>Mehdiabadi, Mahta</au><au>Ramola, Rashika</au><au>Monzon, Alexander Miguel</au><au>Reade, Walter</au><au>Friedberg, Iddo</au><au>Radivojac, Predrag</au><au>Tosatto, Silvio C E</au><au>Arighi, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAFA-evaluator: a Python tool for benchmarking ontological classification methods</atitle><jtitle>Bioinformatics advances</jtitle><addtitle>Bioinform Adv</addtitle><date>2024</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>vbae043</spage><epage>vbae043</epage><pages>vbae043-vbae043</pages><issn>2635-0041</issn><eissn>2635-0041</eissn><abstract>We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software. https://pypi.org/project/cafaeval.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38545087</pmid><doi>10.1093/bioadv/vbae043</doi><orcidid>https://orcid.org/0000-0001-6689-3858</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4525-7793</orcidid><orcidid>https://orcid.org/0000-0001-8210-2390</orcidid><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0003-0362-8218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-0041
ispartof Bioinformatics advances, 2024, Vol.4 (1), p.vbae043-vbae043
issn 2635-0041
2635-0041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10965419
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Application Note
title CAFA-evaluator: a Python tool for benchmarking ontological classification methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAFA-evaluator:%20a%20Python%20tool%20for%20benchmarking%20ontological%20classification%20methods&rft.jtitle=Bioinformatics%20advances&rft.au=Piovesan,%20Damiano&rft.date=2024&rft.volume=4&rft.issue=1&rft.spage=vbae043&rft.epage=vbae043&rft.pages=vbae043-vbae043&rft.issn=2635-0041&rft.eissn=2635-0041&rft_id=info:doi/10.1093/bioadv/vbae043&rft_dat=%3Cproquest_pubme%3E3014005178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3014005178&rft_id=info:pmid/38545087&rfr_iscdi=true