Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model
Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2024-03, Vol.300 (3), p.105783-105783, Article 105783 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105783 |
---|---|
container_issue | 3 |
container_start_page | 105783 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Zhong-Johnson, En Ze Linda Dong, Ziyue Canova, Christopher T. Destro, Francesco Cañellas, Marina Hoffman, Mikaila C. Maréchal, Jeanne Johnson, Timothy M. Zheng, Maya Schlau-Cohen, Gabriela S. Lucas, Maria Fátima Braatz, Richard D. Sprenger, Kayla G. Voigt, Christopher A. Sinskey, Anthony J. |
description | Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation. |
doi_str_mv | 10.1016/j.jbc.2024.105783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824001595</els_id><sourcerecordid>2972705566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4031-1da7b99ca1ee65f54ba0325dc9e2229e10750fa2ace264f73771ebae17dca47e3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxVcIREPhA3BBPpbDBv9Zr7PigKqqQKVK9FAkbtasPZs4OHawnUX77dmQUsEFXyx73nvj8a-qXjO6ZJS177bLbW-WnPJmPku1Ek-qBaMrUQvJvj2tFpRyVndcrs6qFzlv6byajj2vzsRKdFLQblFNlwH8lF0mcSB30U8XWDaTx4CkYML9pmzAQ8G3xOI6gYXiYiDfXcDizG8TjtGPaMlNvru-h4xkhOQglEwO2YU1AZIPaQCDxKT40x6vdtGif1k9G8BnfPWwn1dfP17fX32ub798urm6vK1NQwWrmQXVd50BhtjKQTY9UMGlNR1yzjtkVEk6AJ8b8LYZlFCKYQ_IlDXQKBTn1YdT7v7Q79AaDCWB1_vkdpAmHcHpfyvBbfQ6jprRrhW8YXPCxUNCij8OmIveuWzQewgYD1nzTnFFpWzbWcpO0nnWnBMOj30Y1UdmeqtnZvrITJ-YzZ43fz_w0fEH0ix4fxLg_E2jw6SzcRgMWpfQFG2j-0_8L6kZqqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2972705566</pqid></control><display><type>article</type><title>Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhong-Johnson, En Ze Linda ; Dong, Ziyue ; Canova, Christopher T. ; Destro, Francesco ; Cañellas, Marina ; Hoffman, Mikaila C. ; Maréchal, Jeanne ; Johnson, Timothy M. ; Zheng, Maya ; Schlau-Cohen, Gabriela S. ; Lucas, Maria Fátima ; Braatz, Richard D. ; Sprenger, Kayla G. ; Voigt, Christopher A. ; Sinskey, Anthony J.</creator><creatorcontrib>Zhong-Johnson, En Ze Linda ; Dong, Ziyue ; Canova, Christopher T. ; Destro, Francesco ; Cañellas, Marina ; Hoffman, Mikaila C. ; Maréchal, Jeanne ; Johnson, Timothy M. ; Zheng, Maya ; Schlau-Cohen, Gabriela S. ; Lucas, Maria Fátima ; Braatz, Richard D. ; Sprenger, Kayla G. ; Voigt, Christopher A. ; Sinskey, Anthony J.</creatorcontrib><description>Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105783</identifier><identifier>PMID: 38395309</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biochemical model ; IsPETase ; kinetics ; PET biodegradation ; PETase ; surface crowding</subject><ispartof>The Journal of biological chemistry, 2024-03, Vol.300 (3), p.105783-105783, Article 105783</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4031-1da7b99ca1ee65f54ba0325dc9e2229e10750fa2ace264f73771ebae17dca47e3</citedby><cites>FETCH-LOGICAL-c4031-1da7b99ca1ee65f54ba0325dc9e2229e10750fa2ace264f73771ebae17dca47e3</cites><orcidid>0009-0003-5318-3082 ; 0000-0001-9303-2949 ; 0000-0002-7505-7920 ; 0000-0002-0977-0672 ; 0000-0001-7879-7572 ; 0000-0002-0373-8399 ; 0000-0003-4304-3484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38395309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong-Johnson, En Ze Linda</creatorcontrib><creatorcontrib>Dong, Ziyue</creatorcontrib><creatorcontrib>Canova, Christopher T.</creatorcontrib><creatorcontrib>Destro, Francesco</creatorcontrib><creatorcontrib>Cañellas, Marina</creatorcontrib><creatorcontrib>Hoffman, Mikaila C.</creatorcontrib><creatorcontrib>Maréchal, Jeanne</creatorcontrib><creatorcontrib>Johnson, Timothy M.</creatorcontrib><creatorcontrib>Zheng, Maya</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S.</creatorcontrib><creatorcontrib>Lucas, Maria Fátima</creatorcontrib><creatorcontrib>Braatz, Richard D.</creatorcontrib><creatorcontrib>Sprenger, Kayla G.</creatorcontrib><creatorcontrib>Voigt, Christopher A.</creatorcontrib><creatorcontrib>Sinskey, Anthony J.</creatorcontrib><title>Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.</description><subject>biochemical model</subject><subject>IsPETase</subject><subject>kinetics</subject><subject>PET biodegradation</subject><subject>PETase</subject><subject>surface crowding</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxVcIREPhA3BBPpbDBv9Zr7PigKqqQKVK9FAkbtasPZs4OHawnUX77dmQUsEFXyx73nvj8a-qXjO6ZJS177bLbW-WnPJmPku1Ek-qBaMrUQvJvj2tFpRyVndcrs6qFzlv6byajj2vzsRKdFLQblFNlwH8lF0mcSB30U8XWDaTx4CkYML9pmzAQ8G3xOI6gYXiYiDfXcDizG8TjtGPaMlNvru-h4xkhOQglEwO2YU1AZIPaQCDxKT40x6vdtGif1k9G8BnfPWwn1dfP17fX32ub798urm6vK1NQwWrmQXVd50BhtjKQTY9UMGlNR1yzjtkVEk6AJ8b8LYZlFCKYQ_IlDXQKBTn1YdT7v7Q79AaDCWB1_vkdpAmHcHpfyvBbfQ6jprRrhW8YXPCxUNCij8OmIveuWzQewgYD1nzTnFFpWzbWcpO0nnWnBMOj30Y1UdmeqtnZvrITJ-YzZ43fz_w0fEH0ix4fxLg_E2jw6SzcRgMWpfQFG2j-0_8L6kZqqA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhong-Johnson, En Ze Linda</creator><creator>Dong, Ziyue</creator><creator>Canova, Christopher T.</creator><creator>Destro, Francesco</creator><creator>Cañellas, Marina</creator><creator>Hoffman, Mikaila C.</creator><creator>Maréchal, Jeanne</creator><creator>Johnson, Timothy M.</creator><creator>Zheng, Maya</creator><creator>Schlau-Cohen, Gabriela S.</creator><creator>Lucas, Maria Fátima</creator><creator>Braatz, Richard D.</creator><creator>Sprenger, Kayla G.</creator><creator>Voigt, Christopher A.</creator><creator>Sinskey, Anthony J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0003-5318-3082</orcidid><orcidid>https://orcid.org/0000-0001-9303-2949</orcidid><orcidid>https://orcid.org/0000-0002-7505-7920</orcidid><orcidid>https://orcid.org/0000-0002-0977-0672</orcidid><orcidid>https://orcid.org/0000-0001-7879-7572</orcidid><orcidid>https://orcid.org/0000-0002-0373-8399</orcidid><orcidid>https://orcid.org/0000-0003-4304-3484</orcidid></search><sort><creationdate>20240301</creationdate><title>Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model</title><author>Zhong-Johnson, En Ze Linda ; Dong, Ziyue ; Canova, Christopher T. ; Destro, Francesco ; Cañellas, Marina ; Hoffman, Mikaila C. ; Maréchal, Jeanne ; Johnson, Timothy M. ; Zheng, Maya ; Schlau-Cohen, Gabriela S. ; Lucas, Maria Fátima ; Braatz, Richard D. ; Sprenger, Kayla G. ; Voigt, Christopher A. ; Sinskey, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4031-1da7b99ca1ee65f54ba0325dc9e2229e10750fa2ace264f73771ebae17dca47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biochemical model</topic><topic>IsPETase</topic><topic>kinetics</topic><topic>PET biodegradation</topic><topic>PETase</topic><topic>surface crowding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong-Johnson, En Ze Linda</creatorcontrib><creatorcontrib>Dong, Ziyue</creatorcontrib><creatorcontrib>Canova, Christopher T.</creatorcontrib><creatorcontrib>Destro, Francesco</creatorcontrib><creatorcontrib>Cañellas, Marina</creatorcontrib><creatorcontrib>Hoffman, Mikaila C.</creatorcontrib><creatorcontrib>Maréchal, Jeanne</creatorcontrib><creatorcontrib>Johnson, Timothy M.</creatorcontrib><creatorcontrib>Zheng, Maya</creatorcontrib><creatorcontrib>Schlau-Cohen, Gabriela S.</creatorcontrib><creatorcontrib>Lucas, Maria Fátima</creatorcontrib><creatorcontrib>Braatz, Richard D.</creatorcontrib><creatorcontrib>Sprenger, Kayla G.</creatorcontrib><creatorcontrib>Voigt, Christopher A.</creatorcontrib><creatorcontrib>Sinskey, Anthony J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong-Johnson, En Ze Linda</au><au>Dong, Ziyue</au><au>Canova, Christopher T.</au><au>Destro, Francesco</au><au>Cañellas, Marina</au><au>Hoffman, Mikaila C.</au><au>Maréchal, Jeanne</au><au>Johnson, Timothy M.</au><au>Zheng, Maya</au><au>Schlau-Cohen, Gabriela S.</au><au>Lucas, Maria Fátima</au><au>Braatz, Richard D.</au><au>Sprenger, Kayla G.</au><au>Voigt, Christopher A.</au><au>Sinskey, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>300</volume><issue>3</issue><spage>105783</spage><epage>105783</epage><pages>105783-105783</pages><artnum>105783</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38395309</pmid><doi>10.1016/j.jbc.2024.105783</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-5318-3082</orcidid><orcidid>https://orcid.org/0000-0001-9303-2949</orcidid><orcidid>https://orcid.org/0000-0002-7505-7920</orcidid><orcidid>https://orcid.org/0000-0002-0977-0672</orcidid><orcidid>https://orcid.org/0000-0001-7879-7572</orcidid><orcidid>https://orcid.org/0000-0002-0373-8399</orcidid><orcidid>https://orcid.org/0000-0003-4304-3484</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-03, Vol.300 (3), p.105783-105783, Article 105783 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963241 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | biochemical model IsPETase kinetics PET biodegradation PETase surface crowding |
title | Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Poly(ethylene%20terephthalate)%20degradation%20kinetics%20of%20evolved%20IsPETase%20variants%20using%20a%20surface%20crowding%20model&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhong-Johnson,%20En%20Ze%20Linda&rft.date=2024-03-01&rft.volume=300&rft.issue=3&rft.spage=105783&rft.epage=105783&rft.pages=105783-105783&rft.artnum=105783&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105783&rft_dat=%3Cproquest_pubme%3E2972705566%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2972705566&rft_id=info:pmid/38395309&rft_els_id=S0021925824001595&rfr_iscdi=true |