Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane

The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking memb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2024-03, Vol.35 (3), p.371-380
Hauptverfasser: Nguyen, Son V., Levintov, Lev, Planalp, Roy P., Vashisth, Harish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 371
container_title Bioconjugate chemistry
container_volume 35
creator Nguyen, Son V.
Levintov, Lev
Planalp, Roy P.
Vashisth, Harish
description The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.
doi_str_mv 10.1021/acs.bioconjchem.3c00561
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10961729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2999140948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0Eog_4C2CJDZsJfmbGq6pULVQqoouwtjz2ncRRxk5tDxL_vo4SorabLixb8nfOvUcHoc-UzChh9Juxedb7aGNY2xWMM24JkXP6Bp1SyUgjOsre1jcRvKEdYSfoLOc1IUTRjr1HJ7wTRNCOn6L721AgGVt8DBmb4PAimZC3MRUcB2zw9_2UaWkKOHwP2-Id4IVJSyg-LHFZAf7lSxxh7KsSPqB3g9lk-Hi4z9Gfm-vF1c_m7veP26vLu8YIPi-NU711tB9AUNnP61FGyl5a0ynF6dCBFLttZWsGpxyzVFmheMsH5QBgIPwcXex9t1M_grMQSjIbvU1-NOmfjsbr5z_Br_Qy_tWUqDltmaoOXw8OKT5MkIsefbaw2dQUccq6IowwyVpZ0S8v0HWcUqj5KqUUFUSJrlLtnrIp5pxgOG5Did7Vpmtt-klt-lBbVX56Guao-99TBfge2DkcZ79m-wgTVKtd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2999140948</pqid></control><display><type>article</type><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</creator><creatorcontrib>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</creatorcontrib><description>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</description><identifier>ISSN: 1043-1802</identifier><identifier>ISSN: 1520-4812</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.3c00561</identifier><identifier>PMID: 38404183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell-Penetrating Peptides - chemistry ; Chelation ; Electrostatic properties ; Free energy ; Hydrophobicity ; Lipid Bilayers - chemistry ; Lipids ; Localization ; Membranes ; Metastable state ; Mitochondria ; Molecular dynamics ; Molecular Dynamics Simulation ; Peptides ; Phospholipids ; Translocation</subject><ispartof>Bioconjugate chemistry, 2024-03, Vol.35 (3), p.371-380</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 20, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</cites><orcidid>0000-0002-8497-3621 ; 0000-0001-5673-8694 ; 0000-0002-7950-9226 ; 0000-0002-2087-2880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.3c00561$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00561$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38404183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Son V.</creatorcontrib><creatorcontrib>Levintov, Lev</creatorcontrib><creatorcontrib>Planalp, Roy P.</creatorcontrib><creatorcontrib>Vashisth, Harish</creatorcontrib><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</description><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Chelation</subject><subject>Electrostatic properties</subject><subject>Free energy</subject><subject>Hydrophobicity</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Localization</subject><subject>Membranes</subject><subject>Metastable state</subject><subject>Mitochondria</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Phospholipids</subject><subject>Translocation</subject><issn>1043-1802</issn><issn>1520-4812</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0Eog_4C2CJDZsJfmbGq6pULVQqoouwtjz2ncRRxk5tDxL_vo4SorabLixb8nfOvUcHoc-UzChh9Juxedb7aGNY2xWMM24JkXP6Bp1SyUgjOsre1jcRvKEdYSfoLOc1IUTRjr1HJ7wTRNCOn6L721AgGVt8DBmb4PAimZC3MRUcB2zw9_2UaWkKOHwP2-Id4IVJSyg-LHFZAf7lSxxh7KsSPqB3g9lk-Hi4z9Gfm-vF1c_m7veP26vLu8YIPi-NU711tB9AUNnP61FGyl5a0ynF6dCBFLttZWsGpxyzVFmheMsH5QBgIPwcXex9t1M_grMQSjIbvU1-NOmfjsbr5z_Br_Qy_tWUqDltmaoOXw8OKT5MkIsefbaw2dQUccq6IowwyVpZ0S8v0HWcUqj5KqUUFUSJrlLtnrIp5pxgOG5Did7Vpmtt-klt-lBbVX56Guao-99TBfge2DkcZ79m-wgTVKtd</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Nguyen, Son V.</creator><creator>Levintov, Lev</creator><creator>Planalp, Roy P.</creator><creator>Vashisth, Harish</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8497-3621</orcidid><orcidid>https://orcid.org/0000-0001-5673-8694</orcidid><orcidid>https://orcid.org/0000-0002-7950-9226</orcidid><orcidid>https://orcid.org/0000-0002-2087-2880</orcidid></search><sort><creationdate>20240320</creationdate><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><author>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Chelation</topic><topic>Electrostatic properties</topic><topic>Free energy</topic><topic>Hydrophobicity</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Localization</topic><topic>Membranes</topic><topic>Metastable state</topic><topic>Mitochondria</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Phospholipids</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Son V.</creatorcontrib><creatorcontrib>Levintov, Lev</creatorcontrib><creatorcontrib>Planalp, Roy P.</creatorcontrib><creatorcontrib>Vashisth, Harish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Son V.</au><au>Levintov, Lev</au><au>Planalp, Roy P.</au><au>Vashisth, Harish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>371</spage><epage>380</epage><pages>371-380</pages><issn>1043-1802</issn><issn>1520-4812</issn><eissn>1520-4812</eissn><abstract>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38404183</pmid><doi>10.1021/acs.bioconjchem.3c00561</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8497-3621</orcidid><orcidid>https://orcid.org/0000-0001-5673-8694</orcidid><orcidid>https://orcid.org/0000-0002-7950-9226</orcidid><orcidid>https://orcid.org/0000-0002-2087-2880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2024-03, Vol.35 (3), p.371-380
issn 1043-1802
1520-4812
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10961729
source MEDLINE; ACS Publications
subjects Cell-Penetrating Peptides - chemistry
Chelation
Electrostatic properties
Free energy
Hydrophobicity
Lipid Bilayers - chemistry
Lipids
Localization
Membranes
Metastable state
Mitochondria
Molecular dynamics
Molecular Dynamics Simulation
Peptides
Phospholipids
Translocation
title Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20and%20Transport%20of%20a%20Bioconjugated%20Peptide%20Targeting%20the%20Mitomembrane&rft.jtitle=Bioconjugate%20chemistry&rft.au=Nguyen,%20Son%20V.&rft.date=2024-03-20&rft.volume=35&rft.issue=3&rft.spage=371&rft.epage=380&rft.pages=371-380&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.3c00561&rft_dat=%3Cproquest_pubme%3E2999140948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2999140948&rft_id=info:pmid/38404183&rfr_iscdi=true