Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane
The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking memb...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2024-03, Vol.35 (3), p.371-380 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 3 |
container_start_page | 371 |
container_title | Bioconjugate chemistry |
container_volume | 35 |
creator | Nguyen, Son V. Levintov, Lev Planalp, Roy P. Vashisth, Harish |
description | The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity. |
doi_str_mv | 10.1021/acs.bioconjchem.3c00561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10961729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2999140948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0Eog_4C2CJDZsJfmbGq6pULVQqoouwtjz2ncRRxk5tDxL_vo4SorabLixb8nfOvUcHoc-UzChh9Juxedb7aGNY2xWMM24JkXP6Bp1SyUgjOsre1jcRvKEdYSfoLOc1IUTRjr1HJ7wTRNCOn6L721AgGVt8DBmb4PAimZC3MRUcB2zw9_2UaWkKOHwP2-Id4IVJSyg-LHFZAf7lSxxh7KsSPqB3g9lk-Hi4z9Gfm-vF1c_m7veP26vLu8YIPi-NU711tB9AUNnP61FGyl5a0ynF6dCBFLttZWsGpxyzVFmheMsH5QBgIPwcXex9t1M_grMQSjIbvU1-NOmfjsbr5z_Br_Qy_tWUqDltmaoOXw8OKT5MkIsefbaw2dQUccq6IowwyVpZ0S8v0HWcUqj5KqUUFUSJrlLtnrIp5pxgOG5Did7Vpmtt-klt-lBbVX56Guao-99TBfge2DkcZ79m-wgTVKtd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2999140948</pqid></control><display><type>article</type><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</creator><creatorcontrib>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</creatorcontrib><description>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</description><identifier>ISSN: 1043-1802</identifier><identifier>ISSN: 1520-4812</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.3c00561</identifier><identifier>PMID: 38404183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell-Penetrating Peptides - chemistry ; Chelation ; Electrostatic properties ; Free energy ; Hydrophobicity ; Lipid Bilayers - chemistry ; Lipids ; Localization ; Membranes ; Metastable state ; Mitochondria ; Molecular dynamics ; Molecular Dynamics Simulation ; Peptides ; Phospholipids ; Translocation</subject><ispartof>Bioconjugate chemistry, 2024-03, Vol.35 (3), p.371-380</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 20, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</cites><orcidid>0000-0002-8497-3621 ; 0000-0001-5673-8694 ; 0000-0002-7950-9226 ; 0000-0002-2087-2880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.3c00561$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00561$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38404183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Son V.</creatorcontrib><creatorcontrib>Levintov, Lev</creatorcontrib><creatorcontrib>Planalp, Roy P.</creatorcontrib><creatorcontrib>Vashisth, Harish</creatorcontrib><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</description><subject>Cell-Penetrating Peptides - chemistry</subject><subject>Chelation</subject><subject>Electrostatic properties</subject><subject>Free energy</subject><subject>Hydrophobicity</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Localization</subject><subject>Membranes</subject><subject>Metastable state</subject><subject>Mitochondria</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Phospholipids</subject><subject>Translocation</subject><issn>1043-1802</issn><issn>1520-4812</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0Eog_4C2CJDZsJfmbGq6pULVQqoouwtjz2ncRRxk5tDxL_vo4SorabLixb8nfOvUcHoc-UzChh9Juxedb7aGNY2xWMM24JkXP6Bp1SyUgjOsre1jcRvKEdYSfoLOc1IUTRjr1HJ7wTRNCOn6L721AgGVt8DBmb4PAimZC3MRUcB2zw9_2UaWkKOHwP2-Id4IVJSyg-LHFZAf7lSxxh7KsSPqB3g9lk-Hi4z9Gfm-vF1c_m7veP26vLu8YIPi-NU711tB9AUNnP61FGyl5a0ynF6dCBFLttZWsGpxyzVFmheMsH5QBgIPwcXex9t1M_grMQSjIbvU1-NOmfjsbr5z_Br_Qy_tWUqDltmaoOXw8OKT5MkIsefbaw2dQUccq6IowwyVpZ0S8v0HWcUqj5KqUUFUSJrlLtnrIp5pxgOG5Did7Vpmtt-klt-lBbVX56Guao-99TBfge2DkcZ79m-wgTVKtd</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Nguyen, Son V.</creator><creator>Levintov, Lev</creator><creator>Planalp, Roy P.</creator><creator>Vashisth, Harish</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8497-3621</orcidid><orcidid>https://orcid.org/0000-0001-5673-8694</orcidid><orcidid>https://orcid.org/0000-0002-7950-9226</orcidid><orcidid>https://orcid.org/0000-0002-2087-2880</orcidid></search><sort><creationdate>20240320</creationdate><title>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</title><author>Nguyen, Son V. ; Levintov, Lev ; Planalp, Roy P. ; Vashisth, Harish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-d9bcd1bfe415b615b9a55b5ca89931f8e54009157afd9d2c19c49373f9deeef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell-Penetrating Peptides - chemistry</topic><topic>Chelation</topic><topic>Electrostatic properties</topic><topic>Free energy</topic><topic>Hydrophobicity</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Localization</topic><topic>Membranes</topic><topic>Metastable state</topic><topic>Mitochondria</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Phospholipids</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Son V.</creatorcontrib><creatorcontrib>Levintov, Lev</creatorcontrib><creatorcontrib>Planalp, Roy P.</creatorcontrib><creatorcontrib>Vashisth, Harish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Son V.</au><au>Levintov, Lev</au><au>Planalp, Roy P.</au><au>Vashisth, Harish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>371</spage><epage>380</epage><pages>371-380</pages><issn>1043-1802</issn><issn>1520-4812</issn><eissn>1520-4812</eissn><abstract>The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π–π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38404183</pmid><doi>10.1021/acs.bioconjchem.3c00561</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8497-3621</orcidid><orcidid>https://orcid.org/0000-0001-5673-8694</orcidid><orcidid>https://orcid.org/0000-0002-7950-9226</orcidid><orcidid>https://orcid.org/0000-0002-2087-2880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2024-03, Vol.35 (3), p.371-380 |
issn | 1043-1802 1520-4812 1520-4812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10961729 |
source | MEDLINE; ACS Publications |
subjects | Cell-Penetrating Peptides - chemistry Chelation Electrostatic properties Free energy Hydrophobicity Lipid Bilayers - chemistry Lipids Localization Membranes Metastable state Mitochondria Molecular dynamics Molecular Dynamics Simulation Peptides Phospholipids Translocation |
title | Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20and%20Transport%20of%20a%20Bioconjugated%20Peptide%20Targeting%20the%20Mitomembrane&rft.jtitle=Bioconjugate%20chemistry&rft.au=Nguyen,%20Son%20V.&rft.date=2024-03-20&rft.volume=35&rft.issue=3&rft.spage=371&rft.epage=380&rft.pages=371-380&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.3c00561&rft_dat=%3Cproquest_pubme%3E2999140948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2999140948&rft_id=info:pmid/38404183&rfr_iscdi=true |