A machine-learning-based prediction of non-home discharge among acute heart failure patients

Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical research in cardiology 2024-04, Vol.113 (4), p.522-532
Hauptverfasser: Okada, Akira, Kaneko, Hidehiro, Konishi, Masaaki, Kamiya, Kentaro, Sugimoto, Tadafumi, Matsuoka, Satoshi, Yokota, Isao, Suzuki, Yuta, Yamaguchi, Satoko, Itoh, Hidetaka, Fujiu, Katsuhito, Michihata, Nobuaki, Jo, Taisuke, Matsui, Hiroki, Fushimi, Kiyohide, Takeda, Norifumi, Morita, Hiroyuki, Yasunaga, Hideo, Komuro, Issei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 4
container_start_page 522
container_title Clinical research in cardiology
container_volume 113
creator Okada, Akira
Kaneko, Hidehiro
Konishi, Masaaki
Kamiya, Kentaro
Sugimoto, Tadafumi
Matsuoka, Satoshi
Yokota, Isao
Suzuki, Yuta
Yamaguchi, Satoko
Itoh, Hidetaka
Fujiu, Katsuhito
Michihata, Nobuaki
Jo, Taisuke
Matsui, Hiroki
Fushimi, Kiyohide
Takeda, Norifumi
Morita, Hiroyuki
Yasunaga, Hideo
Komuro, Issei
description Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability. Results We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables ( c -statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight. Conclusions The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.
doi_str_mv 10.1007/s00392-023-02209-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10955024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969147169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYBMbPxCtUVbykSt3QXSXLdSaJq8S-2AkS_x5fbrk8Fl1YtjTfnJnjQ8hLBm8ZQPuuAAjDG-CiHg6mgUfklHWaNaANf3x8d_KEPCvlDkAxEPIpOREtEwxMe0puzuni_BQiNjO6HEMcm1tXsKe7jH3wa0iRpoHGFJspLUj7UPzk8ojULSmO1PltRTrV3pUOLsxbRrpza8C4lufkyeDmgi_u7zNy_fHD14vPzeXVpy8X55eNV1KtjVReDn3HB8mdFtqY1sjWSW94W7f00CqPoAZEITqjFQjd9UoLp5gczN7SGXl_0N1ttwv2vs7Obra7HBaXf9jkgv23EsNkx_Td1j9QCrisCm_uFXL6tmFZ7VJ94jy7iGkrlndgALSWvKKv_0Pv0pZj9We50YbJlmlTKX6gfE6lZByO2zCw-_TsIT1b07O_0rN7H6_-9nFs-R1XBcQBKLUUR8x_Zj8g-xPHrqSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969147169</pqid></control><display><type>article</type><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</creator><creatorcontrib>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</creatorcontrib><description>Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability. Results We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables ( c -statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight. Conclusions The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</description><identifier>ISSN: 1861-0684</identifier><identifier>EISSN: 1861-0692</identifier><identifier>DOI: 10.1007/s00392-023-02209-0</identifier><identifier>PMID: 37131097</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activities of Daily Living ; Body weight ; Cardiology ; Comorbidity ; Confidence intervals ; Congestive heart failure ; Demographics ; Heart failure ; Heart Failure - diagnosis ; Heart Failure - epidemiology ; Heart Failure - therapy ; Hospital Mortality ; Hospitals ; Humans ; Hypertension ; Infant, Newborn ; Learning algorithms ; Machine Learning ; Medicine ; Medicine &amp; Public Health ; Observational learning ; Observational studies ; Original Paper ; Patient Discharge ; Patients ; Prediction models ; Statistical analysis ; Variables</subject><ispartof>Clinical research in cardiology, 2024-04, Vol.113 (4), p.522-532</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</citedby><cites>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00392-023-02209-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00392-023-02209-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37131097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Akira</creatorcontrib><creatorcontrib>Kaneko, Hidehiro</creatorcontrib><creatorcontrib>Konishi, Masaaki</creatorcontrib><creatorcontrib>Kamiya, Kentaro</creatorcontrib><creatorcontrib>Sugimoto, Tadafumi</creatorcontrib><creatorcontrib>Matsuoka, Satoshi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Yamaguchi, Satoko</creatorcontrib><creatorcontrib>Itoh, Hidetaka</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Michihata, Nobuaki</creatorcontrib><creatorcontrib>Jo, Taisuke</creatorcontrib><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Fushimi, Kiyohide</creatorcontrib><creatorcontrib>Takeda, Norifumi</creatorcontrib><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Yasunaga, Hideo</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><title>Clinical research in cardiology</title><addtitle>Clin Res Cardiol</addtitle><addtitle>Clin Res Cardiol</addtitle><description>Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability. Results We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables ( c -statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight. Conclusions The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</description><subject>Activities of Daily Living</subject><subject>Body weight</subject><subject>Cardiology</subject><subject>Comorbidity</subject><subject>Confidence intervals</subject><subject>Congestive heart failure</subject><subject>Demographics</subject><subject>Heart failure</subject><subject>Heart Failure - diagnosis</subject><subject>Heart Failure - epidemiology</subject><subject>Heart Failure - therapy</subject><subject>Hospital Mortality</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Infant, Newborn</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Observational learning</subject><subject>Observational studies</subject><subject>Original Paper</subject><subject>Patient Discharge</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>1861-0684</issn><issn>1861-0692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYBMbPxCtUVbykSt3QXSXLdSaJq8S-2AkS_x5fbrk8Fl1YtjTfnJnjQ8hLBm8ZQPuuAAjDG-CiHg6mgUfklHWaNaANf3x8d_KEPCvlDkAxEPIpOREtEwxMe0puzuni_BQiNjO6HEMcm1tXsKe7jH3wa0iRpoHGFJspLUj7UPzk8ojULSmO1PltRTrV3pUOLsxbRrpza8C4lufkyeDmgi_u7zNy_fHD14vPzeXVpy8X55eNV1KtjVReDn3HB8mdFtqY1sjWSW94W7f00CqPoAZEITqjFQjd9UoLp5gczN7SGXl_0N1ttwv2vs7Obra7HBaXf9jkgv23EsNkx_Td1j9QCrisCm_uFXL6tmFZ7VJ94jy7iGkrlndgALSWvKKv_0Pv0pZj9We50YbJlmlTKX6gfE6lZByO2zCw-_TsIT1b07O_0rN7H6_-9nFs-R1XBcQBKLUUR8x_Zj8g-xPHrqSA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Okada, Akira</creator><creator>Kaneko, Hidehiro</creator><creator>Konishi, Masaaki</creator><creator>Kamiya, Kentaro</creator><creator>Sugimoto, Tadafumi</creator><creator>Matsuoka, Satoshi</creator><creator>Yokota, Isao</creator><creator>Suzuki, Yuta</creator><creator>Yamaguchi, Satoko</creator><creator>Itoh, Hidetaka</creator><creator>Fujiu, Katsuhito</creator><creator>Michihata, Nobuaki</creator><creator>Jo, Taisuke</creator><creator>Matsui, Hiroki</creator><creator>Fushimi, Kiyohide</creator><creator>Takeda, Norifumi</creator><creator>Morita, Hiroyuki</creator><creator>Yasunaga, Hideo</creator><creator>Komuro, Issei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240401</creationdate><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><author>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activities of Daily Living</topic><topic>Body weight</topic><topic>Cardiology</topic><topic>Comorbidity</topic><topic>Confidence intervals</topic><topic>Congestive heart failure</topic><topic>Demographics</topic><topic>Heart failure</topic><topic>Heart Failure - diagnosis</topic><topic>Heart Failure - epidemiology</topic><topic>Heart Failure - therapy</topic><topic>Hospital Mortality</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Infant, Newborn</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Observational learning</topic><topic>Observational studies</topic><topic>Original Paper</topic><topic>Patient Discharge</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Akira</creatorcontrib><creatorcontrib>Kaneko, Hidehiro</creatorcontrib><creatorcontrib>Konishi, Masaaki</creatorcontrib><creatorcontrib>Kamiya, Kentaro</creatorcontrib><creatorcontrib>Sugimoto, Tadafumi</creatorcontrib><creatorcontrib>Matsuoka, Satoshi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Yamaguchi, Satoko</creatorcontrib><creatorcontrib>Itoh, Hidetaka</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Michihata, Nobuaki</creatorcontrib><creatorcontrib>Jo, Taisuke</creatorcontrib><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Fushimi, Kiyohide</creatorcontrib><creatorcontrib>Takeda, Norifumi</creatorcontrib><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Yasunaga, Hideo</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Akira</au><au>Kaneko, Hidehiro</au><au>Konishi, Masaaki</au><au>Kamiya, Kentaro</au><au>Sugimoto, Tadafumi</au><au>Matsuoka, Satoshi</au><au>Yokota, Isao</au><au>Suzuki, Yuta</au><au>Yamaguchi, Satoko</au><au>Itoh, Hidetaka</au><au>Fujiu, Katsuhito</au><au>Michihata, Nobuaki</au><au>Jo, Taisuke</au><au>Matsui, Hiroki</au><au>Fushimi, Kiyohide</au><au>Takeda, Norifumi</au><au>Morita, Hiroyuki</au><au>Yasunaga, Hideo</au><au>Komuro, Issei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine-learning-based prediction of non-home discharge among acute heart failure patients</atitle><jtitle>Clinical research in cardiology</jtitle><stitle>Clin Res Cardiol</stitle><addtitle>Clin Res Cardiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>113</volume><issue>4</issue><spage>522</spage><epage>532</epage><pages>522-532</pages><issn>1861-0684</issn><eissn>1861-0692</eissn><abstract>Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability. Results We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables ( c -statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight. Conclusions The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37131097</pmid><doi>10.1007/s00392-023-02209-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-0684
ispartof Clinical research in cardiology, 2024-04, Vol.113 (4), p.522-532
issn 1861-0684
1861-0692
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10955024
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Activities of Daily Living
Body weight
Cardiology
Comorbidity
Confidence intervals
Congestive heart failure
Demographics
Heart failure
Heart Failure - diagnosis
Heart Failure - epidemiology
Heart Failure - therapy
Hospital Mortality
Hospitals
Humans
Hypertension
Infant, Newborn
Learning algorithms
Machine Learning
Medicine
Medicine & Public Health
Observational learning
Observational studies
Original Paper
Patient Discharge
Patients
Prediction models
Statistical analysis
Variables
title A machine-learning-based prediction of non-home discharge among acute heart failure patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine-learning-based%20prediction%20of%20non-home%20discharge%20among%20acute%20heart%20failure%20patients&rft.jtitle=Clinical%20research%20in%20cardiology&rft.au=Okada,%20Akira&rft.date=2024-04-01&rft.volume=113&rft.issue=4&rft.spage=522&rft.epage=532&rft.pages=522-532&rft.issn=1861-0684&rft.eissn=1861-0692&rft_id=info:doi/10.1007/s00392-023-02209-0&rft_dat=%3Cproquest_pubme%3E2969147169%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969147169&rft_id=info:pmid/37131097&rfr_iscdi=true