A machine-learning-based prediction of non-home discharge among acute heart failure patients
Background Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning. Methods This observational cohort study using a J...
Gespeichert in:
Veröffentlicht in: | Clinical research in cardiology 2024-04, Vol.113 (4), p.522-532 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 4 |
container_start_page | 522 |
container_title | Clinical research in cardiology |
container_volume | 113 |
creator | Okada, Akira Kaneko, Hidehiro Konishi, Masaaki Kamiya, Kentaro Sugimoto, Tadafumi Matsuoka, Satoshi Yokota, Isao Suzuki, Yuta Yamaguchi, Satoko Itoh, Hidetaka Fujiu, Katsuhito Michihata, Nobuaki Jo, Taisuke Matsui, Hiroki Fushimi, Kiyohide Takeda, Norifumi Morita, Hiroyuki Yasunaga, Hideo Komuro, Issei |
description | Background
Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning.
Methods
This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability.
Results
We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables (
c
-statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight.
Conclusions
The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence. |
doi_str_mv | 10.1007/s00392-023-02209-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10955024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969147169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYBMbPxCtUVbykSt3QXSXLdSaJq8S-2AkS_x5fbrk8Fl1YtjTfnJnjQ8hLBm8ZQPuuAAjDG-CiHg6mgUfklHWaNaANf3x8d_KEPCvlDkAxEPIpOREtEwxMe0puzuni_BQiNjO6HEMcm1tXsKe7jH3wa0iRpoHGFJspLUj7UPzk8ojULSmO1PltRTrV3pUOLsxbRrpza8C4lufkyeDmgi_u7zNy_fHD14vPzeXVpy8X55eNV1KtjVReDn3HB8mdFtqY1sjWSW94W7f00CqPoAZEITqjFQjd9UoLp5gczN7SGXl_0N1ttwv2vs7Obra7HBaXf9jkgv23EsNkx_Td1j9QCrisCm_uFXL6tmFZ7VJ94jy7iGkrlndgALSWvKKv_0Pv0pZj9We50YbJlmlTKX6gfE6lZByO2zCw-_TsIT1b07O_0rN7H6_-9nFs-R1XBcQBKLUUR8x_Zj8g-xPHrqSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969147169</pqid></control><display><type>article</type><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</creator><creatorcontrib>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</creatorcontrib><description>Background
Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning.
Methods
This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability.
Results
We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables (
c
-statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight.
Conclusions
The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</description><identifier>ISSN: 1861-0684</identifier><identifier>EISSN: 1861-0692</identifier><identifier>DOI: 10.1007/s00392-023-02209-0</identifier><identifier>PMID: 37131097</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activities of Daily Living ; Body weight ; Cardiology ; Comorbidity ; Confidence intervals ; Congestive heart failure ; Demographics ; Heart failure ; Heart Failure - diagnosis ; Heart Failure - epidemiology ; Heart Failure - therapy ; Hospital Mortality ; Hospitals ; Humans ; Hypertension ; Infant, Newborn ; Learning algorithms ; Machine Learning ; Medicine ; Medicine & Public Health ; Observational learning ; Observational studies ; Original Paper ; Patient Discharge ; Patients ; Prediction models ; Statistical analysis ; Variables</subject><ispartof>Clinical research in cardiology, 2024-04, Vol.113 (4), p.522-532</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</citedby><cites>FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00392-023-02209-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00392-023-02209-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37131097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Akira</creatorcontrib><creatorcontrib>Kaneko, Hidehiro</creatorcontrib><creatorcontrib>Konishi, Masaaki</creatorcontrib><creatorcontrib>Kamiya, Kentaro</creatorcontrib><creatorcontrib>Sugimoto, Tadafumi</creatorcontrib><creatorcontrib>Matsuoka, Satoshi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Yamaguchi, Satoko</creatorcontrib><creatorcontrib>Itoh, Hidetaka</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Michihata, Nobuaki</creatorcontrib><creatorcontrib>Jo, Taisuke</creatorcontrib><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Fushimi, Kiyohide</creatorcontrib><creatorcontrib>Takeda, Norifumi</creatorcontrib><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Yasunaga, Hideo</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><title>Clinical research in cardiology</title><addtitle>Clin Res Cardiol</addtitle><addtitle>Clin Res Cardiol</addtitle><description>Background
Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning.
Methods
This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability.
Results
We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables (
c
-statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight.
Conclusions
The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</description><subject>Activities of Daily Living</subject><subject>Body weight</subject><subject>Cardiology</subject><subject>Comorbidity</subject><subject>Confidence intervals</subject><subject>Congestive heart failure</subject><subject>Demographics</subject><subject>Heart failure</subject><subject>Heart Failure - diagnosis</subject><subject>Heart Failure - epidemiology</subject><subject>Heart Failure - therapy</subject><subject>Hospital Mortality</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Infant, Newborn</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Observational learning</subject><subject>Observational studies</subject><subject>Original Paper</subject><subject>Patient Discharge</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>1861-0684</issn><issn>1861-0692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQhS0EoqXwB1ggS2zYBMbPxCtUVbykSt3QXSXLdSaJq8S-2AkS_x5fbrk8Fl1YtjTfnJnjQ8hLBm8ZQPuuAAjDG-CiHg6mgUfklHWaNaANf3x8d_KEPCvlDkAxEPIpOREtEwxMe0puzuni_BQiNjO6HEMcm1tXsKe7jH3wa0iRpoHGFJspLUj7UPzk8ojULSmO1PltRTrV3pUOLsxbRrpza8C4lufkyeDmgi_u7zNy_fHD14vPzeXVpy8X55eNV1KtjVReDn3HB8mdFtqY1sjWSW94W7f00CqPoAZEITqjFQjd9UoLp5gczN7SGXl_0N1ttwv2vs7Obra7HBaXf9jkgv23EsNkx_Td1j9QCrisCm_uFXL6tmFZ7VJ94jy7iGkrlndgALSWvKKv_0Pv0pZj9We50YbJlmlTKX6gfE6lZByO2zCw-_TsIT1b07O_0rN7H6_-9nFs-R1XBcQBKLUUR8x_Zj8g-xPHrqSA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Okada, Akira</creator><creator>Kaneko, Hidehiro</creator><creator>Konishi, Masaaki</creator><creator>Kamiya, Kentaro</creator><creator>Sugimoto, Tadafumi</creator><creator>Matsuoka, Satoshi</creator><creator>Yokota, Isao</creator><creator>Suzuki, Yuta</creator><creator>Yamaguchi, Satoko</creator><creator>Itoh, Hidetaka</creator><creator>Fujiu, Katsuhito</creator><creator>Michihata, Nobuaki</creator><creator>Jo, Taisuke</creator><creator>Matsui, Hiroki</creator><creator>Fushimi, Kiyohide</creator><creator>Takeda, Norifumi</creator><creator>Morita, Hiroyuki</creator><creator>Yasunaga, Hideo</creator><creator>Komuro, Issei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240401</creationdate><title>A machine-learning-based prediction of non-home discharge among acute heart failure patients</title><author>Okada, Akira ; Kaneko, Hidehiro ; Konishi, Masaaki ; Kamiya, Kentaro ; Sugimoto, Tadafumi ; Matsuoka, Satoshi ; Yokota, Isao ; Suzuki, Yuta ; Yamaguchi, Satoko ; Itoh, Hidetaka ; Fujiu, Katsuhito ; Michihata, Nobuaki ; Jo, Taisuke ; Matsui, Hiroki ; Fushimi, Kiyohide ; Takeda, Norifumi ; Morita, Hiroyuki ; Yasunaga, Hideo ; Komuro, Issei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-45c4fd82f42a636997947a4c927310c075ce05fee3389650368d563a514f95103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activities of Daily Living</topic><topic>Body weight</topic><topic>Cardiology</topic><topic>Comorbidity</topic><topic>Confidence intervals</topic><topic>Congestive heart failure</topic><topic>Demographics</topic><topic>Heart failure</topic><topic>Heart Failure - diagnosis</topic><topic>Heart Failure - epidemiology</topic><topic>Heart Failure - therapy</topic><topic>Hospital Mortality</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Infant, Newborn</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Observational learning</topic><topic>Observational studies</topic><topic>Original Paper</topic><topic>Patient Discharge</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Akira</creatorcontrib><creatorcontrib>Kaneko, Hidehiro</creatorcontrib><creatorcontrib>Konishi, Masaaki</creatorcontrib><creatorcontrib>Kamiya, Kentaro</creatorcontrib><creatorcontrib>Sugimoto, Tadafumi</creatorcontrib><creatorcontrib>Matsuoka, Satoshi</creatorcontrib><creatorcontrib>Yokota, Isao</creatorcontrib><creatorcontrib>Suzuki, Yuta</creatorcontrib><creatorcontrib>Yamaguchi, Satoko</creatorcontrib><creatorcontrib>Itoh, Hidetaka</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Michihata, Nobuaki</creatorcontrib><creatorcontrib>Jo, Taisuke</creatorcontrib><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Fushimi, Kiyohide</creatorcontrib><creatorcontrib>Takeda, Norifumi</creatorcontrib><creatorcontrib>Morita, Hiroyuki</creatorcontrib><creatorcontrib>Yasunaga, Hideo</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Akira</au><au>Kaneko, Hidehiro</au><au>Konishi, Masaaki</au><au>Kamiya, Kentaro</au><au>Sugimoto, Tadafumi</au><au>Matsuoka, Satoshi</au><au>Yokota, Isao</au><au>Suzuki, Yuta</au><au>Yamaguchi, Satoko</au><au>Itoh, Hidetaka</au><au>Fujiu, Katsuhito</au><au>Michihata, Nobuaki</au><au>Jo, Taisuke</au><au>Matsui, Hiroki</au><au>Fushimi, Kiyohide</au><au>Takeda, Norifumi</au><au>Morita, Hiroyuki</au><au>Yasunaga, Hideo</au><au>Komuro, Issei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine-learning-based prediction of non-home discharge among acute heart failure patients</atitle><jtitle>Clinical research in cardiology</jtitle><stitle>Clin Res Cardiol</stitle><addtitle>Clin Res Cardiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>113</volume><issue>4</issue><spage>522</spage><epage>532</epage><pages>522-532</pages><issn>1861-0684</issn><eissn>1861-0692</eissn><abstract>Background
Scarce data on factors related to discharge disposition in patients hospitalized for acute heart failure (AHF) were available, and we sought to develop a parsimonious and simple predictive model for non-home discharge via machine learning.
Methods
This observational cohort study using a Japanese national database included 128,068 patients admitted from home for AHF between April 2014 and March 2018. The candidate predictors for non-home discharge were patient demographics, comorbidities, and treatment performed within 2 days after hospital admission. We used 80% of the population to develop a model using all 26 candidate variables and using the variable selected by 1 standard-error rule of Lasso regression, which enhances interpretability, and 20% to validate the predictive ability.
Results
We analyzed 128,068 patients, and 22,330 patients were not discharged to home; 7,879 underwent in-hospital death and 14,451 were transferred to other facilities. The machine-learning-based model consisted of 11 predictors, showing a discrimination ability comparable to that using all the 26 variables (
c
-statistic: 0.760 [95% confidence interval, 0.752–0.767] vs. 0.761 [95% confidence interval, 0.753–0.769]). The common 1SE-selected variables identified throughout all analyses were low scores in activities of daily living, advanced age, absence of hypertension, impaired consciousness, failure to initiate enteral alimentation within 2 days and low body weight.
Conclusions
The developed machine learning model using 11 predictors had a good predictive ability to identify patients at high risk for non-home discharge. Our findings would contribute to the effective care coordination in this era when HF is rapidly increasing in prevalence.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37131097</pmid><doi>10.1007/s00392-023-02209-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-0684 |
ispartof | Clinical research in cardiology, 2024-04, Vol.113 (4), p.522-532 |
issn | 1861-0684 1861-0692 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10955024 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Activities of Daily Living Body weight Cardiology Comorbidity Confidence intervals Congestive heart failure Demographics Heart failure Heart Failure - diagnosis Heart Failure - epidemiology Heart Failure - therapy Hospital Mortality Hospitals Humans Hypertension Infant, Newborn Learning algorithms Machine Learning Medicine Medicine & Public Health Observational learning Observational studies Original Paper Patient Discharge Patients Prediction models Statistical analysis Variables |
title | A machine-learning-based prediction of non-home discharge among acute heart failure patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine-learning-based%20prediction%20of%20non-home%20discharge%20among%20acute%20heart%20failure%20patients&rft.jtitle=Clinical%20research%20in%20cardiology&rft.au=Okada,%20Akira&rft.date=2024-04-01&rft.volume=113&rft.issue=4&rft.spage=522&rft.epage=532&rft.pages=522-532&rft.issn=1861-0684&rft.eissn=1861-0692&rft_id=info:doi/10.1007/s00392-023-02209-0&rft_dat=%3Cproquest_pubme%3E2969147169%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969147169&rft_id=info:pmid/37131097&rfr_iscdi=true |