Penning micro-trap for quantum computing
Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips wit...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-03, Vol.627 (8004), p.510-514 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 8004 |
container_start_page | 510 |
container_title | Nature (London) |
container_volume | 627 |
creator | Jain, Shreyans Sägesser, Tobias Hrmo, Pavel Torkzaban, Celeste Stadler, Martin Oswald, Robin Axline, Chris Bautista-Salvador, Amado Ospelkaus, Christian Kienzler, Daniel Home, Jonathan |
description | Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times
1
–
3
. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages
4
, managing power dissipation
5
and restricting transport and placement of ions
6
. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.
A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip. |
doi_str_mv | 10.1038/s41586-024-07111-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10954548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957166965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5AxxQJS69GMbxmhNCFZtUCQ5wttLELqkSp7UTVP49hpSyHDjNYb5582YeQicEzglQdREY4UpgSBgGSQjB6x00JEwKzISSu2gIkCgMiooBOghhAQCcSLaPBlQxBSqFIRo_GudKNx_VZe4b3PpsObKNH626zLVdPcqbetm1EThCezargjne1EP0fHP9NLnD04fb-8nVFOdM8hZbOuOWcp4JDlZZFn3ytLAkV9QSEVemMyFAUiOFFVYRSQtJZKZYwhIomKCH6LLXXXaz2hS5cdFTpZe-rDP_ppus1L87rnzR8-ZVE0g540xFhfFGwTerzoRW12XITVVlzjRd0EnKJREiFTyiZ3_QRdN5F--LlKSRiYqRSnoqfigEb-zWDQH9kYTuk9AxCf2ZhF7HodOfd2xHvl4fAdoDIbbc3Pjv3f_IvgMUwJLX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973696454</pqid></control><display><type>article</type><title>Penning micro-trap for quantum computing</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</creator><creatorcontrib>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</creatorcontrib><description>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times
1
–
3
. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages
4
, managing power dissipation
5
and restricting transport and placement of ions
6
. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.
A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07111-x</identifier><identifier>PMID: 38480890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Arrays ; Charge coupled devices ; Computers ; Cooling ; Electrodes ; Humanities and Social Sciences ; Ions ; Lasers ; Magnetic fields ; multidisciplinary ; Quantum computers ; Quantum computing ; Radio frequency ; Science ; Science (multidisciplinary) ; Semiconductors ; Spectrum analysis</subject><ispartof>Nature (London), 2024-03, Vol.627 (8004), p.510-514</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 21, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</citedby><cites>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</cites><orcidid>0000-0002-6595-7992 ; 0000-0003-1507-0637 ; 0000-0002-4093-1550 ; 0000-0002-1708-3688 ; 0000-0002-6895-9096 ; 0000-0002-4170-2936 ; 0000-0001-7338-1666 ; 0000-0002-6528-0117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07111-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07111-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38480890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Shreyans</creatorcontrib><creatorcontrib>Sägesser, Tobias</creatorcontrib><creatorcontrib>Hrmo, Pavel</creatorcontrib><creatorcontrib>Torkzaban, Celeste</creatorcontrib><creatorcontrib>Stadler, Martin</creatorcontrib><creatorcontrib>Oswald, Robin</creatorcontrib><creatorcontrib>Axline, Chris</creatorcontrib><creatorcontrib>Bautista-Salvador, Amado</creatorcontrib><creatorcontrib>Ospelkaus, Christian</creatorcontrib><creatorcontrib>Kienzler, Daniel</creatorcontrib><creatorcontrib>Home, Jonathan</creatorcontrib><title>Penning micro-trap for quantum computing</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times
1
–
3
. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages
4
, managing power dissipation
5
and restricting transport and placement of ions
6
. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.
A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Arrays</subject><subject>Charge coupled devices</subject><subject>Computers</subject><subject>Cooling</subject><subject>Electrodes</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Radio frequency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUlPwzAQhS0EomX5AxxQJS69GMbxmhNCFZtUCQ5wttLELqkSp7UTVP49hpSyHDjNYb5582YeQicEzglQdREY4UpgSBgGSQjB6x00JEwKzISSu2gIkCgMiooBOghhAQCcSLaPBlQxBSqFIRo_GudKNx_VZe4b3PpsObKNH626zLVdPcqbetm1EThCezargjne1EP0fHP9NLnD04fb-8nVFOdM8hZbOuOWcp4JDlZZFn3ytLAkV9QSEVemMyFAUiOFFVYRSQtJZKZYwhIomKCH6LLXXXaz2hS5cdFTpZe-rDP_ppus1L87rnzR8-ZVE0g540xFhfFGwTerzoRW12XITVVlzjRd0EnKJREiFTyiZ3_QRdN5F--LlKSRiYqRSnoqfigEb-zWDQH9kYTuk9AxCf2ZhF7HodOfd2xHvl4fAdoDIbbc3Pjv3f_IvgMUwJLX</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Jain, Shreyans</creator><creator>Sägesser, Tobias</creator><creator>Hrmo, Pavel</creator><creator>Torkzaban, Celeste</creator><creator>Stadler, Martin</creator><creator>Oswald, Robin</creator><creator>Axline, Chris</creator><creator>Bautista-Salvador, Amado</creator><creator>Ospelkaus, Christian</creator><creator>Kienzler, Daniel</creator><creator>Home, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6595-7992</orcidid><orcidid>https://orcid.org/0000-0003-1507-0637</orcidid><orcidid>https://orcid.org/0000-0002-4093-1550</orcidid><orcidid>https://orcid.org/0000-0002-1708-3688</orcidid><orcidid>https://orcid.org/0000-0002-6895-9096</orcidid><orcidid>https://orcid.org/0000-0002-4170-2936</orcidid><orcidid>https://orcid.org/0000-0001-7338-1666</orcidid><orcidid>https://orcid.org/0000-0002-6528-0117</orcidid></search><sort><creationdate>20240321</creationdate><title>Penning micro-trap for quantum computing</title><author>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Arrays</topic><topic>Charge coupled devices</topic><topic>Computers</topic><topic>Cooling</topic><topic>Electrodes</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Radio frequency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Shreyans</creatorcontrib><creatorcontrib>Sägesser, Tobias</creatorcontrib><creatorcontrib>Hrmo, Pavel</creatorcontrib><creatorcontrib>Torkzaban, Celeste</creatorcontrib><creatorcontrib>Stadler, Martin</creatorcontrib><creatorcontrib>Oswald, Robin</creatorcontrib><creatorcontrib>Axline, Chris</creatorcontrib><creatorcontrib>Bautista-Salvador, Amado</creatorcontrib><creatorcontrib>Ospelkaus, Christian</creatorcontrib><creatorcontrib>Kienzler, Daniel</creatorcontrib><creatorcontrib>Home, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Shreyans</au><au>Sägesser, Tobias</au><au>Hrmo, Pavel</au><au>Torkzaban, Celeste</au><au>Stadler, Martin</au><au>Oswald, Robin</au><au>Axline, Chris</au><au>Bautista-Salvador, Amado</au><au>Ospelkaus, Christian</au><au>Kienzler, Daniel</au><au>Home, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penning micro-trap for quantum computing</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-03-21</date><risdate>2024</risdate><volume>627</volume><issue>8004</issue><spage>510</spage><epage>514</epage><pages>510-514</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times
1
–
3
. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages
4
, managing power dissipation
5
and restricting transport and placement of ions
6
. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.
A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38480890</pmid><doi>10.1038/s41586-024-07111-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6595-7992</orcidid><orcidid>https://orcid.org/0000-0003-1507-0637</orcidid><orcidid>https://orcid.org/0000-0002-4093-1550</orcidid><orcidid>https://orcid.org/0000-0002-1708-3688</orcidid><orcidid>https://orcid.org/0000-0002-6895-9096</orcidid><orcidid>https://orcid.org/0000-0002-4170-2936</orcidid><orcidid>https://orcid.org/0000-0001-7338-1666</orcidid><orcidid>https://orcid.org/0000-0002-6528-0117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-03, Vol.627 (8004), p.510-514 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10954548 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/483/2802 639/766/483/481 Arrays Charge coupled devices Computers Cooling Electrodes Humanities and Social Sciences Ions Lasers Magnetic fields multidisciplinary Quantum computers Quantum computing Radio frequency Science Science (multidisciplinary) Semiconductors Spectrum analysis |
title | Penning micro-trap for quantum computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penning%20micro-trap%20for%20quantum%20computing&rft.jtitle=Nature%20(London)&rft.au=Jain,%20Shreyans&rft.date=2024-03-21&rft.volume=627&rft.issue=8004&rft.spage=510&rft.epage=514&rft.pages=510-514&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07111-x&rft_dat=%3Cproquest_pubme%3E2957166965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973696454&rft_id=info:pmid/38480890&rfr_iscdi=true |