Penning micro-trap for quantum computing

Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-03, Vol.627 (8004), p.510-514
Hauptverfasser: Jain, Shreyans, Sägesser, Tobias, Hrmo, Pavel, Torkzaban, Celeste, Stadler, Martin, Oswald, Robin, Axline, Chris, Bautista-Salvador, Amado, Ospelkaus, Christian, Kienzler, Daniel, Home, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 8004
container_start_page 510
container_title Nature (London)
container_volume 627
creator Jain, Shreyans
Sägesser, Tobias
Hrmo, Pavel
Torkzaban, Celeste
Stadler, Martin
Oswald, Robin
Axline, Chris
Bautista-Salvador, Amado
Ospelkaus, Christian
Kienzler, Daniel
Home, Jonathan
description Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages 4 , managing power dissipation 5 and restricting transport and placement of ions 6 . Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing. A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.
doi_str_mv 10.1038/s41586-024-07111-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10954548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957166965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5AxxQJS69GMbxmhNCFZtUCQ5wttLELqkSp7UTVP49hpSyHDjNYb5582YeQicEzglQdREY4UpgSBgGSQjB6x00JEwKzISSu2gIkCgMiooBOghhAQCcSLaPBlQxBSqFIRo_GudKNx_VZe4b3PpsObKNH626zLVdPcqbetm1EThCezargjne1EP0fHP9NLnD04fb-8nVFOdM8hZbOuOWcp4JDlZZFn3ytLAkV9QSEVemMyFAUiOFFVYRSQtJZKZYwhIomKCH6LLXXXaz2hS5cdFTpZe-rDP_ppus1L87rnzR8-ZVE0g540xFhfFGwTerzoRW12XITVVlzjRd0EnKJREiFTyiZ3_QRdN5F--LlKSRiYqRSnoqfigEb-zWDQH9kYTuk9AxCf2ZhF7HodOfd2xHvl4fAdoDIbbc3Pjv3f_IvgMUwJLX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973696454</pqid></control><display><type>article</type><title>Penning micro-trap for quantum computing</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</creator><creatorcontrib>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</creatorcontrib><description>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages 4 , managing power dissipation 5 and restricting transport and placement of ions 6 . Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing. A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07111-x</identifier><identifier>PMID: 38480890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Arrays ; Charge coupled devices ; Computers ; Cooling ; Electrodes ; Humanities and Social Sciences ; Ions ; Lasers ; Magnetic fields ; multidisciplinary ; Quantum computers ; Quantum computing ; Radio frequency ; Science ; Science (multidisciplinary) ; Semiconductors ; Spectrum analysis</subject><ispartof>Nature (London), 2024-03, Vol.627 (8004), p.510-514</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 21, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</citedby><cites>FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</cites><orcidid>0000-0002-6595-7992 ; 0000-0003-1507-0637 ; 0000-0002-4093-1550 ; 0000-0002-1708-3688 ; 0000-0002-6895-9096 ; 0000-0002-4170-2936 ; 0000-0001-7338-1666 ; 0000-0002-6528-0117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07111-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07111-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38480890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Shreyans</creatorcontrib><creatorcontrib>Sägesser, Tobias</creatorcontrib><creatorcontrib>Hrmo, Pavel</creatorcontrib><creatorcontrib>Torkzaban, Celeste</creatorcontrib><creatorcontrib>Stadler, Martin</creatorcontrib><creatorcontrib>Oswald, Robin</creatorcontrib><creatorcontrib>Axline, Chris</creatorcontrib><creatorcontrib>Bautista-Salvador, Amado</creatorcontrib><creatorcontrib>Ospelkaus, Christian</creatorcontrib><creatorcontrib>Kienzler, Daniel</creatorcontrib><creatorcontrib>Home, Jonathan</creatorcontrib><title>Penning micro-trap for quantum computing</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages 4 , managing power dissipation 5 and restricting transport and placement of ions 6 . Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing. A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Arrays</subject><subject>Charge coupled devices</subject><subject>Computers</subject><subject>Cooling</subject><subject>Electrodes</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Radio frequency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUlPwzAQhS0EomX5AxxQJS69GMbxmhNCFZtUCQ5wttLELqkSp7UTVP49hpSyHDjNYb5582YeQicEzglQdREY4UpgSBgGSQjB6x00JEwKzISSu2gIkCgMiooBOghhAQCcSLaPBlQxBSqFIRo_GudKNx_VZe4b3PpsObKNH626zLVdPcqbetm1EThCezargjne1EP0fHP9NLnD04fb-8nVFOdM8hZbOuOWcp4JDlZZFn3ytLAkV9QSEVemMyFAUiOFFVYRSQtJZKZYwhIomKCH6LLXXXaz2hS5cdFTpZe-rDP_ppus1L87rnzR8-ZVE0g540xFhfFGwTerzoRW12XITVVlzjRd0EnKJREiFTyiZ3_QRdN5F--LlKSRiYqRSnoqfigEb-zWDQH9kYTuk9AxCf2ZhF7HodOfd2xHvl4fAdoDIbbc3Pjv3f_IvgMUwJLX</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Jain, Shreyans</creator><creator>Sägesser, Tobias</creator><creator>Hrmo, Pavel</creator><creator>Torkzaban, Celeste</creator><creator>Stadler, Martin</creator><creator>Oswald, Robin</creator><creator>Axline, Chris</creator><creator>Bautista-Salvador, Amado</creator><creator>Ospelkaus, Christian</creator><creator>Kienzler, Daniel</creator><creator>Home, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6595-7992</orcidid><orcidid>https://orcid.org/0000-0003-1507-0637</orcidid><orcidid>https://orcid.org/0000-0002-4093-1550</orcidid><orcidid>https://orcid.org/0000-0002-1708-3688</orcidid><orcidid>https://orcid.org/0000-0002-6895-9096</orcidid><orcidid>https://orcid.org/0000-0002-4170-2936</orcidid><orcidid>https://orcid.org/0000-0001-7338-1666</orcidid><orcidid>https://orcid.org/0000-0002-6528-0117</orcidid></search><sort><creationdate>20240321</creationdate><title>Penning micro-trap for quantum computing</title><author>Jain, Shreyans ; Sägesser, Tobias ; Hrmo, Pavel ; Torkzaban, Celeste ; Stadler, Martin ; Oswald, Robin ; Axline, Chris ; Bautista-Salvador, Amado ; Ospelkaus, Christian ; Kienzler, Daniel ; Home, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f3b5f355a650f8f403859df1c83f168909b66073e76f6f8173d717a842420d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Arrays</topic><topic>Charge coupled devices</topic><topic>Computers</topic><topic>Cooling</topic><topic>Electrodes</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Radio frequency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Shreyans</creatorcontrib><creatorcontrib>Sägesser, Tobias</creatorcontrib><creatorcontrib>Hrmo, Pavel</creatorcontrib><creatorcontrib>Torkzaban, Celeste</creatorcontrib><creatorcontrib>Stadler, Martin</creatorcontrib><creatorcontrib>Oswald, Robin</creatorcontrib><creatorcontrib>Axline, Chris</creatorcontrib><creatorcontrib>Bautista-Salvador, Amado</creatorcontrib><creatorcontrib>Ospelkaus, Christian</creatorcontrib><creatorcontrib>Kienzler, Daniel</creatorcontrib><creatorcontrib>Home, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Shreyans</au><au>Sägesser, Tobias</au><au>Hrmo, Pavel</au><au>Torkzaban, Celeste</au><au>Stadler, Martin</au><au>Oswald, Robin</au><au>Axline, Chris</au><au>Bautista-Salvador, Amado</au><au>Ospelkaus, Christian</au><au>Kienzler, Daniel</au><au>Home, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penning micro-trap for quantum computing</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-03-21</date><risdate>2024</risdate><volume>627</volume><issue>8004</issue><spage>510</spage><epage>514</epage><pages>510-514</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times 1 – 3 . However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages 4 , managing power dissipation 5 and restricting transport and placement of ions 6 . Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing. A micro-fabricated Penning trap that operates at a 3 T magnetic field demonstrates full quantum control of an ion and the ability to transport the ion arbitrarily in the trapping plane above the chip.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38480890</pmid><doi>10.1038/s41586-024-07111-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6595-7992</orcidid><orcidid>https://orcid.org/0000-0003-1507-0637</orcidid><orcidid>https://orcid.org/0000-0002-4093-1550</orcidid><orcidid>https://orcid.org/0000-0002-1708-3688</orcidid><orcidid>https://orcid.org/0000-0002-6895-9096</orcidid><orcidid>https://orcid.org/0000-0002-4170-2936</orcidid><orcidid>https://orcid.org/0000-0001-7338-1666</orcidid><orcidid>https://orcid.org/0000-0002-6528-0117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-03, Vol.627 (8004), p.510-514
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10954548
source SpringerLink Journals; Nature Journals Online
subjects 639/766/483/2802
639/766/483/481
Arrays
Charge coupled devices
Computers
Cooling
Electrodes
Humanities and Social Sciences
Ions
Lasers
Magnetic fields
multidisciplinary
Quantum computers
Quantum computing
Radio frequency
Science
Science (multidisciplinary)
Semiconductors
Spectrum analysis
title Penning micro-trap for quantum computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penning%20micro-trap%20for%20quantum%20computing&rft.jtitle=Nature%20(London)&rft.au=Jain,%20Shreyans&rft.date=2024-03-21&rft.volume=627&rft.issue=8004&rft.spage=510&rft.epage=514&rft.pages=510-514&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07111-x&rft_dat=%3Cproquest_pubme%3E2957166965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973696454&rft_id=info:pmid/38480890&rfr_iscdi=true