Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma
Summary Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid‐derived MPO w...
Gespeichert in:
Veröffentlicht in: | British journal of haematology 2023-11, Vol.203 (4), p.614-624 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 4 |
container_start_page | 614 |
container_title | British journal of haematology |
container_volume | 203 |
creator | Williams, Connor M. D. Noll, Jacqueline E. Bradey, Alanah L. Duggan, Jvaughn Wilczek, Vicki J. Masavuli, Makutiro G. Grubor‐Bauk, Branka Panagopoulos, Romana A. Hewett, Duncan R. Mrozik, Krzysztof M. Zannettino, Andrew C. W. Vandyke, Kate Panagopoulos, Vasilios |
description | Summary
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid‐derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1‐KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T‐cell activity. Notably, tumour growth studies in mice treated with a small‐molecule irreversible inhibitor of MPO (4‐ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO‐specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Myeloma tumour development is accompanied by an increase in myeloid cell‐derived myeloperoxidase (MPO). MPO modifies the bone marrow microenvironment with increases in IL6, VEGFa and CCL2 stromal expression, and a reduction in IFN‐γ positive cytotoxic T‐cells, providing a supportive niche for myeloma plasma cell growth. Importantly, the therapeutic targeting of MPO with the irreversible inhibitor 4‐ABAH, impedes myeloma disease progression in vivo. |
doi_str_mv | 10.1111/bjh.19102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889592563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4042-2dc36772530511f9c1d839770158b087ada11a00766e408c19453f252c1bd8a13</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EotvCgRdAlrjQQ1pPYjvxCUEFlKqIC5wtrzPpeuXEwU4W9u1x2LYqSPVlJPvz5388hLwCdgZ5na-3mzNQwMonZAWVFEUJHJ6SFWOsLoDx5ogcp7RlDCom4Dk5qmqplKj5iuDXPfowYgy_XWsSUhvRTJiooXmzdym5HdLe2Rhw2LkYhh6HyXg6OLtB2oVIp1zHGG4iZjgMNHS0n_3kRp8vLvbevCDPOuMTvrytJ-THp4_fLy6L62-fv1y8vy4sZ7wsytZWsq5LscSETllom0rVNQPRrFlTm9YAmNyUlMhZY0FxUXWlKC2s28ZAdULeHbzjvO6xtTlqNF6P0fUm7nUwTv97MriNvgk7DUyJ7Kmy4e2tIYafM6ZJ5z-w6L0ZMMxJl43kEpTky2Nv_kO3YY5D7i9TjRKqFHIRnh6o_IMpRezu0wDTy_R0np7-O73Mvn4Y_568G1cGzg_AL-dx_7hJf7i6PCj_AMEupNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889592563</pqid></control><display><type>article</type><title>Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Williams, Connor M. D. ; Noll, Jacqueline E. ; Bradey, Alanah L. ; Duggan, Jvaughn ; Wilczek, Vicki J. ; Masavuli, Makutiro G. ; Grubor‐Bauk, Branka ; Panagopoulos, Romana A. ; Hewett, Duncan R. ; Mrozik, Krzysztof M. ; Zannettino, Andrew C. W. ; Vandyke, Kate ; Panagopoulos, Vasilios</creator><creatorcontrib>Williams, Connor M. D. ; Noll, Jacqueline E. ; Bradey, Alanah L. ; Duggan, Jvaughn ; Wilczek, Vicki J. ; Masavuli, Makutiro G. ; Grubor‐Bauk, Branka ; Panagopoulos, Romana A. ; Hewett, Duncan R. ; Mrozik, Krzysztof M. ; Zannettino, Andrew C. W. ; Vandyke, Kate ; Panagopoulos, Vasilios</creatorcontrib><description>Summary
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid‐derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1‐KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T‐cell activity. Notably, tumour growth studies in mice treated with a small‐molecule irreversible inhibitor of MPO (4‐ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO‐specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Myeloma tumour development is accompanied by an increase in myeloid cell‐derived myeloperoxidase (MPO). MPO modifies the bone marrow microenvironment with increases in IL6, VEGFa and CCL2 stromal expression, and a reduction in IFN‐γ positive cytotoxic T‐cells, providing a supportive niche for myeloma plasma cell growth. Importantly, the therapeutic targeting of MPO with the irreversible inhibitor 4‐ABAH, impedes myeloma disease progression in vivo.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.19102</identifier><identifier>PMID: 37699574</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Bone Marrow - pathology ; CD11b antigen ; Cell proliferation ; Cytotoxicity ; Disease Models, Animal ; Growth factors ; Haematological Malignancy ‐ Biology ; Hematology ; immune suppression ; Inflammation ; Mice ; Microenvironments ; Multiple myeloma ; Multiple Myeloma - metabolism ; Multiple Myeloma - pathology ; Myeloid cells ; Myeloid Cells - pathology ; myeloid‐derived suppressor cells ; myeloperoxidase ; Original Paper ; Peroxidase ; Peroxidase - metabolism ; Solid tumors ; Tumor Microenvironment</subject><ispartof>British journal of haematology, 2023-11, Vol.203 (4), p.614-624</ispartof><rights>2023 The Authors. published by British Society for Haematology and John Wiley & Sons Ltd.</rights><rights>2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4042-2dc36772530511f9c1d839770158b087ada11a00766e408c19453f252c1bd8a13</cites><orcidid>0000-0002-6879-1262 ; 0000-0002-6646-6167 ; 0000-0002-1033-849X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.19102$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.19102$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37699574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Connor M. D.</creatorcontrib><creatorcontrib>Noll, Jacqueline E.</creatorcontrib><creatorcontrib>Bradey, Alanah L.</creatorcontrib><creatorcontrib>Duggan, Jvaughn</creatorcontrib><creatorcontrib>Wilczek, Vicki J.</creatorcontrib><creatorcontrib>Masavuli, Makutiro G.</creatorcontrib><creatorcontrib>Grubor‐Bauk, Branka</creatorcontrib><creatorcontrib>Panagopoulos, Romana A.</creatorcontrib><creatorcontrib>Hewett, Duncan R.</creatorcontrib><creatorcontrib>Mrozik, Krzysztof M.</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Vandyke, Kate</creatorcontrib><creatorcontrib>Panagopoulos, Vasilios</creatorcontrib><title>Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid‐derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1‐KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T‐cell activity. Notably, tumour growth studies in mice treated with a small‐molecule irreversible inhibitor of MPO (4‐ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO‐specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Myeloma tumour development is accompanied by an increase in myeloid cell‐derived myeloperoxidase (MPO). MPO modifies the bone marrow microenvironment with increases in IL6, VEGFa and CCL2 stromal expression, and a reduction in IFN‐γ positive cytotoxic T‐cells, providing a supportive niche for myeloma plasma cell growth. Importantly, the therapeutic targeting of MPO with the irreversible inhibitor 4‐ABAH, impedes myeloma disease progression in vivo.</description><subject>Animals</subject><subject>Bone Marrow - pathology</subject><subject>CD11b antigen</subject><subject>Cell proliferation</subject><subject>Cytotoxicity</subject><subject>Disease Models, Animal</subject><subject>Growth factors</subject><subject>Haematological Malignancy ‐ Biology</subject><subject>Hematology</subject><subject>immune suppression</subject><subject>Inflammation</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - metabolism</subject><subject>Multiple Myeloma - pathology</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - pathology</subject><subject>myeloid‐derived suppressor cells</subject><subject>myeloperoxidase</subject><subject>Original Paper</subject><subject>Peroxidase</subject><subject>Peroxidase - metabolism</subject><subject>Solid tumors</subject><subject>Tumor Microenvironment</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EotvCgRdAlrjQQ1pPYjvxCUEFlKqIC5wtrzPpeuXEwU4W9u1x2LYqSPVlJPvz5388hLwCdgZ5na-3mzNQwMonZAWVFEUJHJ6SFWOsLoDx5ogcp7RlDCom4Dk5qmqplKj5iuDXPfowYgy_XWsSUhvRTJiooXmzdym5HdLe2Rhw2LkYhh6HyXg6OLtB2oVIp1zHGG4iZjgMNHS0n_3kRp8vLvbevCDPOuMTvrytJ-THp4_fLy6L62-fv1y8vy4sZ7wsytZWsq5LscSETllom0rVNQPRrFlTm9YAmNyUlMhZY0FxUXWlKC2s28ZAdULeHbzjvO6xtTlqNF6P0fUm7nUwTv97MriNvgk7DUyJ7Kmy4e2tIYafM6ZJ5z-w6L0ZMMxJl43kEpTky2Nv_kO3YY5D7i9TjRKqFHIRnh6o_IMpRezu0wDTy_R0np7-O73Mvn4Y_568G1cGzg_AL-dx_7hJf7i6PCj_AMEupNU</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Williams, Connor M. D.</creator><creator>Noll, Jacqueline E.</creator><creator>Bradey, Alanah L.</creator><creator>Duggan, Jvaughn</creator><creator>Wilczek, Vicki J.</creator><creator>Masavuli, Makutiro G.</creator><creator>Grubor‐Bauk, Branka</creator><creator>Panagopoulos, Romana A.</creator><creator>Hewett, Duncan R.</creator><creator>Mrozik, Krzysztof M.</creator><creator>Zannettino, Andrew C. W.</creator><creator>Vandyke, Kate</creator><creator>Panagopoulos, Vasilios</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6879-1262</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-1033-849X</orcidid></search><sort><creationdate>202311</creationdate><title>Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma</title><author>Williams, Connor M. D. ; Noll, Jacqueline E. ; Bradey, Alanah L. ; Duggan, Jvaughn ; Wilczek, Vicki J. ; Masavuli, Makutiro G. ; Grubor‐Bauk, Branka ; Panagopoulos, Romana A. ; Hewett, Duncan R. ; Mrozik, Krzysztof M. ; Zannettino, Andrew C. W. ; Vandyke, Kate ; Panagopoulos, Vasilios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4042-2dc36772530511f9c1d839770158b087ada11a00766e408c19453f252c1bd8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Bone Marrow - pathology</topic><topic>CD11b antigen</topic><topic>Cell proliferation</topic><topic>Cytotoxicity</topic><topic>Disease Models, Animal</topic><topic>Growth factors</topic><topic>Haematological Malignancy ‐ Biology</topic><topic>Hematology</topic><topic>immune suppression</topic><topic>Inflammation</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - metabolism</topic><topic>Multiple Myeloma - pathology</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - pathology</topic><topic>myeloid‐derived suppressor cells</topic><topic>myeloperoxidase</topic><topic>Original Paper</topic><topic>Peroxidase</topic><topic>Peroxidase - metabolism</topic><topic>Solid tumors</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Connor M. D.</creatorcontrib><creatorcontrib>Noll, Jacqueline E.</creatorcontrib><creatorcontrib>Bradey, Alanah L.</creatorcontrib><creatorcontrib>Duggan, Jvaughn</creatorcontrib><creatorcontrib>Wilczek, Vicki J.</creatorcontrib><creatorcontrib>Masavuli, Makutiro G.</creatorcontrib><creatorcontrib>Grubor‐Bauk, Branka</creatorcontrib><creatorcontrib>Panagopoulos, Romana A.</creatorcontrib><creatorcontrib>Hewett, Duncan R.</creatorcontrib><creatorcontrib>Mrozik, Krzysztof M.</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Vandyke, Kate</creatorcontrib><creatorcontrib>Panagopoulos, Vasilios</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Connor M. D.</au><au>Noll, Jacqueline E.</au><au>Bradey, Alanah L.</au><au>Duggan, Jvaughn</au><au>Wilczek, Vicki J.</au><au>Masavuli, Makutiro G.</au><au>Grubor‐Bauk, Branka</au><au>Panagopoulos, Romana A.</au><au>Hewett, Duncan R.</au><au>Mrozik, Krzysztof M.</au><au>Zannettino, Andrew C. W.</au><au>Vandyke, Kate</au><au>Panagopoulos, Vasilios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2023-11</date><risdate>2023</risdate><volume>203</volume><issue>4</issue><spage>614</spage><epage>624</epage><pages>614-624</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid‐derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1‐KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T‐cell activity. Notably, tumour growth studies in mice treated with a small‐molecule irreversible inhibitor of MPO (4‐ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO‐specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Myeloma tumour development is accompanied by an increase in myeloid cell‐derived myeloperoxidase (MPO). MPO modifies the bone marrow microenvironment with increases in IL6, VEGFa and CCL2 stromal expression, and a reduction in IFN‐γ positive cytotoxic T‐cells, providing a supportive niche for myeloma plasma cell growth. Importantly, the therapeutic targeting of MPO with the irreversible inhibitor 4‐ABAH, impedes myeloma disease progression in vivo.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37699574</pmid><doi>10.1111/bjh.19102</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6879-1262</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-1033-849X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1048 |
ispartof | British journal of haematology, 2023-11, Vol.203 (4), p.614-624 |
issn | 0007-1048 1365-2141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952523 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library |
subjects | Animals Bone Marrow - pathology CD11b antigen Cell proliferation Cytotoxicity Disease Models, Animal Growth factors Haematological Malignancy ‐ Biology Hematology immune suppression Inflammation Mice Microenvironments Multiple myeloma Multiple Myeloma - metabolism Multiple Myeloma - pathology Myeloid cells Myeloid Cells - pathology myeloid‐derived suppressor cells myeloperoxidase Original Paper Peroxidase Peroxidase - metabolism Solid tumors Tumor Microenvironment |
title | Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myeloperoxidase%20creates%20a%20permissive%20microenvironmental%20niche%20for%20the%20progression%20of%20multiple%20myeloma&rft.jtitle=British%20journal%20of%20haematology&rft.au=Williams,%20Connor%20M.%20D.&rft.date=2023-11&rft.volume=203&rft.issue=4&rft.spage=614&rft.epage=624&rft.pages=614-624&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.19102&rft_dat=%3Cproquest_pubme%3E2889592563%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889592563&rft_id=info:pmid/37699574&rfr_iscdi=true |