Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease

Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. To impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2023-10, Vol.58 (4), p.1153-1160
Hauptverfasser: Dev, Hreedi, Zhu, Chenglin, Sharbatdaran, Arman, Raza, Syed I, Wang, Sophie J, Romano, Dominick J, Goel, Akshay, Teichman, Kurt, Moghadam, Mina C, Shih, George, Blumenfeld, Jon D, Shimonov, Daniil, Chevalier, James M, Prince, Martin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1160
container_issue 4
container_start_page 1153
container_title Journal of magnetic resonance imaging
container_volume 58
creator Dev, Hreedi
Zhu, Chenglin
Sharbatdaran, Arman
Raza, Syed I
Wang, Sophie J
Romano, Dominick J
Goel, Akshay
Teichman, Kurt
Moghadam, Mina C
Shih, George
Blumenfeld, Jon D
Shimonov, Daniil
Chevalier, James M
Prince, Martin R
description Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. To improve TKV measurement reproducibility on MRI by extending artificial intelligence algorithms to automatically segment kidneys on T1-weighted, T2-weighted, and steady state free precession (SSFP) sequences in axial and coronal planes and averaging measurements. Retrospective training, prospective testing. Three hundred ninety-seven patients (356 with ADPKD, 41 without), 75% for training and 25% for validation, 40 ADPKD patients for testing and 17 ADPKD patients for assessing reproducibility. T2-weighted single-shot fast spin echo (T2), SSFP, and T1-weighted 3D spoiled gradient echo (T1) at 1.5 and 3T. 2D U-net segmentation algorithm was trained on images from all sequences. Five observers independently measured each kidney volume manually on axial T2 and using model-assisted segmentations on all sequences and image plane orientations for two MRI exams in two sessions separated by 1-3 weeks to assess reproducibility. Manual and model-assisted segmentation times were recorded. Bland-Altman, Schapiro-Wilk (normality assessment), Pearson's chi-squared (categorical variables); Dice similarity coefficient, interclass correlation coefficient, and concordance correlation coefficient for analyzing TKV reproducibility. P-value 
doi_str_mv 10.1002/jmri.28593
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10947493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766064193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-46c73e0283849dd0e0282f00dd16adf6d4d18154110cba25cbe2ffb15a579de43</originalsourceid><addsrcrecordid>eNpdkdtq3DAQhk1paNKkN32AIuhNKTiVZEm2r8qSM82SkB5uhSyNt1pkaSNZAT9HXzjenGh7NQPzzT-HvyjeE3xIMKZf1kO0h7ThbfWq2COc0pLyRryec8yrkjS43i3eprTGGLct42-K3UoIxglhe8Wfk74HPaLQo8UdRLWyfoWWoFKOMIAfEzqNYUDL7Ea7cYCWNxfoOrsE6DvcZvAaEgoefbPGw4R-BZcHQDewicFkbTvr7Dgh69EijyGFQTl0HAbrlR_RdXCTntJo9XP7sU3zZDgodno1j3j3FPeLn6cnP47Oy8urs4ujxWWpGa7HkgldV4BpUzWsNQZvU9pjbAwRyvTCMEMawhkhWHeKct0B7fuOcMXr1gCr9ouvj7qb3A1g9HxuVE5uoh1UnGRQVv5b8fa3XIU7SXDLatZWs8KnJ4UY5m-kUQ42aXBOeQg5SVoLgQUjD-jH_9B1yNHP90naCE7rlvMt9fmR0jGkFKF_2YZguTVbbs2WD2bP8Ie_939Bn92t7gFoWKh3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865279553</pqid></control><display><type>article</type><title>Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Dev, Hreedi ; Zhu, Chenglin ; Sharbatdaran, Arman ; Raza, Syed I ; Wang, Sophie J ; Romano, Dominick J ; Goel, Akshay ; Teichman, Kurt ; Moghadam, Mina C ; Shih, George ; Blumenfeld, Jon D ; Shimonov, Daniil ; Chevalier, James M ; Prince, Martin R</creator><creatorcontrib>Dev, Hreedi ; Zhu, Chenglin ; Sharbatdaran, Arman ; Raza, Syed I ; Wang, Sophie J ; Romano, Dominick J ; Goel, Akshay ; Teichman, Kurt ; Moghadam, Mina C ; Shih, George ; Blumenfeld, Jon D ; Shimonov, Daniil ; Chevalier, James M ; Prince, Martin R</creatorcontrib><description>Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. To improve TKV measurement reproducibility on MRI by extending artificial intelligence algorithms to automatically segment kidneys on T1-weighted, T2-weighted, and steady state free precession (SSFP) sequences in axial and coronal planes and averaging measurements. Retrospective training, prospective testing. Three hundred ninety-seven patients (356 with ADPKD, 41 without), 75% for training and 25% for validation, 40 ADPKD patients for testing and 17 ADPKD patients for assessing reproducibility. T2-weighted single-shot fast spin echo (T2), SSFP, and T1-weighted 3D spoiled gradient echo (T1) at 1.5 and 3T. 2D U-net segmentation algorithm was trained on images from all sequences. Five observers independently measured each kidney volume manually on axial T2 and using model-assisted segmentations on all sequences and image plane orientations for two MRI exams in two sessions separated by 1-3 weeks to assess reproducibility. Manual and model-assisted segmentation times were recorded. Bland-Altman, Schapiro-Wilk (normality assessment), Pearson's chi-squared (categorical variables); Dice similarity coefficient, interclass correlation coefficient, and concordance correlation coefficient for analyzing TKV reproducibility. P-value &lt; 0.05 was considered statistically significant. In 17 ADPKD subjects, model-assisted segmentations of axial T2 images were significantly faster than manual segmentations (2:49 minute vs. 11:34 minute), with no significant absolute percent difference in TKV (5.9% vs. 5.3%, P = 0.88) between scans 1 and 2. Absolute percent differences between the two scans for model-assisted segmentations on other sequences were 5.5% (axial T1), 4.5% (axial SSFP), 4.1% (coronal SSFP), and 3.2% (coronal T2). Averaging measurements from all five model-assisted segmentations significantly reduced absolute percent difference to 2.5%, further improving to 2.1% after excluding an outlier. Measuring TKV on multiple MRI pulse sequences in coronal and axial planes is practical with deep learning model-assisted segmentations and can improve TKV measurement reproducibility more than 2-fold in ADPKD. 2 TECHNICAL EFFICACY: Stage 1.</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28593</identifier><identifier>PMID: 36645114</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Biomarkers ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Field strength ; Humans ; Image processing ; Image segmentation ; Kidney - diagnostic imaging ; Kidney diseases ; Kidneys ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Normality ; Outliers (statistics) ; Planes ; Polycystic kidney ; Polycystic Kidney, Autosomal Dominant - diagnostic imaging ; Prospective Studies ; Reproducibility ; Reproducibility of Results ; Retrospective Studies ; Statistical analysis ; Statistical tests ; Training</subject><ispartof>Journal of magnetic resonance imaging, 2023-10, Vol.58 (4), p.1153-1160</ispartof><rights>2023 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-46c73e0283849dd0e0282f00dd16adf6d4d18154110cba25cbe2ffb15a579de43</citedby><cites>FETCH-LOGICAL-c407t-46c73e0283849dd0e0282f00dd16adf6d4d18154110cba25cbe2ffb15a579de43</cites><orcidid>0000-0001-7722-9207 ; 0000-0002-1376-4099 ; 0000-0002-5341-8350 ; 0000-0002-0954-8836 ; 0000-0002-8691-406X ; 0000-0002-7097-0032 ; 0000-0002-5122-7067 ; 0000-0003-4833-9356 ; 0000-0002-9883-0584 ; 0000-0002-8356-2011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36645114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dev, Hreedi</creatorcontrib><creatorcontrib>Zhu, Chenglin</creatorcontrib><creatorcontrib>Sharbatdaran, Arman</creatorcontrib><creatorcontrib>Raza, Syed I</creatorcontrib><creatorcontrib>Wang, Sophie J</creatorcontrib><creatorcontrib>Romano, Dominick J</creatorcontrib><creatorcontrib>Goel, Akshay</creatorcontrib><creatorcontrib>Teichman, Kurt</creatorcontrib><creatorcontrib>Moghadam, Mina C</creatorcontrib><creatorcontrib>Shih, George</creatorcontrib><creatorcontrib>Blumenfeld, Jon D</creatorcontrib><creatorcontrib>Shimonov, Daniil</creatorcontrib><creatorcontrib>Chevalier, James M</creatorcontrib><creatorcontrib>Prince, Martin R</creatorcontrib><title>Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. To improve TKV measurement reproducibility on MRI by extending artificial intelligence algorithms to automatically segment kidneys on T1-weighted, T2-weighted, and steady state free precession (SSFP) sequences in axial and coronal planes and averaging measurements. Retrospective training, prospective testing. Three hundred ninety-seven patients (356 with ADPKD, 41 without), 75% for training and 25% for validation, 40 ADPKD patients for testing and 17 ADPKD patients for assessing reproducibility. T2-weighted single-shot fast spin echo (T2), SSFP, and T1-weighted 3D spoiled gradient echo (T1) at 1.5 and 3T. 2D U-net segmentation algorithm was trained on images from all sequences. Five observers independently measured each kidney volume manually on axial T2 and using model-assisted segmentations on all sequences and image plane orientations for two MRI exams in two sessions separated by 1-3 weeks to assess reproducibility. Manual and model-assisted segmentation times were recorded. Bland-Altman, Schapiro-Wilk (normality assessment), Pearson's chi-squared (categorical variables); Dice similarity coefficient, interclass correlation coefficient, and concordance correlation coefficient for analyzing TKV reproducibility. P-value &lt; 0.05 was considered statistically significant. In 17 ADPKD subjects, model-assisted segmentations of axial T2 images were significantly faster than manual segmentations (2:49 minute vs. 11:34 minute), with no significant absolute percent difference in TKV (5.9% vs. 5.3%, P = 0.88) between scans 1 and 2. Absolute percent differences between the two scans for model-assisted segmentations on other sequences were 5.5% (axial T1), 4.5% (axial SSFP), 4.1% (coronal SSFP), and 3.2% (coronal T2). Averaging measurements from all five model-assisted segmentations significantly reduced absolute percent difference to 2.5%, further improving to 2.1% after excluding an outlier. Measuring TKV on multiple MRI pulse sequences in coronal and axial planes is practical with deep learning model-assisted segmentations and can improve TKV measurement reproducibility more than 2-fold in ADPKD. 2 TECHNICAL EFFICACY: Stage 1.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomarkers</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Field strength</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Normality</subject><subject>Outliers (statistics)</subject><subject>Planes</subject><subject>Polycystic kidney</subject><subject>Polycystic Kidney, Autosomal Dominant - diagnostic imaging</subject><subject>Prospective Studies</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Training</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdtq3DAQhk1paNKkN32AIuhNKTiVZEm2r8qSM82SkB5uhSyNt1pkaSNZAT9HXzjenGh7NQPzzT-HvyjeE3xIMKZf1kO0h7ThbfWq2COc0pLyRryec8yrkjS43i3eprTGGLct42-K3UoIxglhe8Wfk74HPaLQo8UdRLWyfoWWoFKOMIAfEzqNYUDL7Ea7cYCWNxfoOrsE6DvcZvAaEgoefbPGw4R-BZcHQDewicFkbTvr7Dgh69EijyGFQTl0HAbrlR_RdXCTntJo9XP7sU3zZDgodno1j3j3FPeLn6cnP47Oy8urs4ujxWWpGa7HkgldV4BpUzWsNQZvU9pjbAwRyvTCMEMawhkhWHeKct0B7fuOcMXr1gCr9ouvj7qb3A1g9HxuVE5uoh1UnGRQVv5b8fa3XIU7SXDLatZWs8KnJ4UY5m-kUQ42aXBOeQg5SVoLgQUjD-jH_9B1yNHP90naCE7rlvMt9fmR0jGkFKF_2YZguTVbbs2WD2bP8Ie_939Bn92t7gFoWKh3</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Dev, Hreedi</creator><creator>Zhu, Chenglin</creator><creator>Sharbatdaran, Arman</creator><creator>Raza, Syed I</creator><creator>Wang, Sophie J</creator><creator>Romano, Dominick J</creator><creator>Goel, Akshay</creator><creator>Teichman, Kurt</creator><creator>Moghadam, Mina C</creator><creator>Shih, George</creator><creator>Blumenfeld, Jon D</creator><creator>Shimonov, Daniil</creator><creator>Chevalier, James M</creator><creator>Prince, Martin R</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7722-9207</orcidid><orcidid>https://orcid.org/0000-0002-1376-4099</orcidid><orcidid>https://orcid.org/0000-0002-5341-8350</orcidid><orcidid>https://orcid.org/0000-0002-0954-8836</orcidid><orcidid>https://orcid.org/0000-0002-8691-406X</orcidid><orcidid>https://orcid.org/0000-0002-7097-0032</orcidid><orcidid>https://orcid.org/0000-0002-5122-7067</orcidid><orcidid>https://orcid.org/0000-0003-4833-9356</orcidid><orcidid>https://orcid.org/0000-0002-9883-0584</orcidid><orcidid>https://orcid.org/0000-0002-8356-2011</orcidid></search><sort><creationdate>20231001</creationdate><title>Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease</title><author>Dev, Hreedi ; Zhu, Chenglin ; Sharbatdaran, Arman ; Raza, Syed I ; Wang, Sophie J ; Romano, Dominick J ; Goel, Akshay ; Teichman, Kurt ; Moghadam, Mina C ; Shih, George ; Blumenfeld, Jon D ; Shimonov, Daniil ; Chevalier, James M ; Prince, Martin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-46c73e0283849dd0e0282f00dd16adf6d4d18154110cba25cbe2ffb15a579de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomarkers</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Field strength</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Normality</topic><topic>Outliers (statistics)</topic><topic>Planes</topic><topic>Polycystic kidney</topic><topic>Polycystic Kidney, Autosomal Dominant - diagnostic imaging</topic><topic>Prospective Studies</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Hreedi</creatorcontrib><creatorcontrib>Zhu, Chenglin</creatorcontrib><creatorcontrib>Sharbatdaran, Arman</creatorcontrib><creatorcontrib>Raza, Syed I</creatorcontrib><creatorcontrib>Wang, Sophie J</creatorcontrib><creatorcontrib>Romano, Dominick J</creatorcontrib><creatorcontrib>Goel, Akshay</creatorcontrib><creatorcontrib>Teichman, Kurt</creatorcontrib><creatorcontrib>Moghadam, Mina C</creatorcontrib><creatorcontrib>Shih, George</creatorcontrib><creatorcontrib>Blumenfeld, Jon D</creatorcontrib><creatorcontrib>Shimonov, Daniil</creatorcontrib><creatorcontrib>Chevalier, James M</creatorcontrib><creatorcontrib>Prince, Martin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dev, Hreedi</au><au>Zhu, Chenglin</au><au>Sharbatdaran, Arman</au><au>Raza, Syed I</au><au>Wang, Sophie J</au><au>Romano, Dominick J</au><au>Goel, Akshay</au><au>Teichman, Kurt</au><au>Moghadam, Mina C</au><au>Shih, George</au><au>Blumenfeld, Jon D</au><au>Shimonov, Daniil</au><au>Chevalier, James M</au><au>Prince, Martin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>58</volume><issue>4</issue><spage>1153</spage><epage>1160</epage><pages>1153-1160</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. To improve TKV measurement reproducibility on MRI by extending artificial intelligence algorithms to automatically segment kidneys on T1-weighted, T2-weighted, and steady state free precession (SSFP) sequences in axial and coronal planes and averaging measurements. Retrospective training, prospective testing. Three hundred ninety-seven patients (356 with ADPKD, 41 without), 75% for training and 25% for validation, 40 ADPKD patients for testing and 17 ADPKD patients for assessing reproducibility. T2-weighted single-shot fast spin echo (T2), SSFP, and T1-weighted 3D spoiled gradient echo (T1) at 1.5 and 3T. 2D U-net segmentation algorithm was trained on images from all sequences. Five observers independently measured each kidney volume manually on axial T2 and using model-assisted segmentations on all sequences and image plane orientations for two MRI exams in two sessions separated by 1-3 weeks to assess reproducibility. Manual and model-assisted segmentation times were recorded. Bland-Altman, Schapiro-Wilk (normality assessment), Pearson's chi-squared (categorical variables); Dice similarity coefficient, interclass correlation coefficient, and concordance correlation coefficient for analyzing TKV reproducibility. P-value &lt; 0.05 was considered statistically significant. In 17 ADPKD subjects, model-assisted segmentations of axial T2 images were significantly faster than manual segmentations (2:49 minute vs. 11:34 minute), with no significant absolute percent difference in TKV (5.9% vs. 5.3%, P = 0.88) between scans 1 and 2. Absolute percent differences between the two scans for model-assisted segmentations on other sequences were 5.5% (axial T1), 4.5% (axial SSFP), 4.1% (coronal SSFP), and 3.2% (coronal T2). Averaging measurements from all five model-assisted segmentations significantly reduced absolute percent difference to 2.5%, further improving to 2.1% after excluding an outlier. Measuring TKV on multiple MRI pulse sequences in coronal and axial planes is practical with deep learning model-assisted segmentations and can improve TKV measurement reproducibility more than 2-fold in ADPKD. 2 TECHNICAL EFFICACY: Stage 1.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36645114</pmid><doi>10.1002/jmri.28593</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7722-9207</orcidid><orcidid>https://orcid.org/0000-0002-1376-4099</orcidid><orcidid>https://orcid.org/0000-0002-5341-8350</orcidid><orcidid>https://orcid.org/0000-0002-0954-8836</orcidid><orcidid>https://orcid.org/0000-0002-8691-406X</orcidid><orcidid>https://orcid.org/0000-0002-7097-0032</orcidid><orcidid>https://orcid.org/0000-0002-5122-7067</orcidid><orcidid>https://orcid.org/0000-0003-4833-9356</orcidid><orcidid>https://orcid.org/0000-0002-9883-0584</orcidid><orcidid>https://orcid.org/0000-0002-8356-2011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2023-10, Vol.58 (4), p.1153-1160
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10947493
source MEDLINE; Wiley Journals
subjects Algorithms
Artificial Intelligence
Biomarkers
Correlation coefficient
Correlation coefficients
Deep learning
Field strength
Humans
Image processing
Image segmentation
Kidney - diagnostic imaging
Kidney diseases
Kidneys
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Normality
Outliers (statistics)
Planes
Polycystic kidney
Polycystic Kidney, Autosomal Dominant - diagnostic imaging
Prospective Studies
Reproducibility
Reproducibility of Results
Retrospective Studies
Statistical analysis
Statistical tests
Training
title Effect of Averaging Measurements From Multiple MRI Pulse Sequences on Kidney Volume Reproducibility in Autosomal Dominant Polycystic Kidney Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Averaging%20Measurements%20From%20Multiple%20MRI%20Pulse%20Sequences%20on%20Kidney%20Volume%20Reproducibility%20in%20Autosomal%20Dominant%20Polycystic%20Kidney%20Disease&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Dev,%20Hreedi&rft.date=2023-10-01&rft.volume=58&rft.issue=4&rft.spage=1153&rft.epage=1160&rft.pages=1153-1160&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28593&rft_dat=%3Cproquest_pubme%3E2766064193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865279553&rft_id=info:pmid/36645114&rfr_iscdi=true