Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models

Generative text‐to‐image models (as exemplified by DALL‐E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains—from logo design to digital painting to photographic composition. However, the quality of these res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2023-06, Vol.42 (3), p.423-435
Hauptverfasser: Schetinger, V., Di Bartolomeo, S., El‐Assady, M., McNutt, A., Miller, M., Passos, J. P. A., Adams, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 3
container_start_page 423
container_title Computer graphics forum
container_volume 42
creator Schetinger, V.
Di Bartolomeo, S.
El‐Assady, M.
McNutt, A.
Miller, M.
Passos, J. P. A.
Adams, J. L.
description Generative text‐to‐image models (as exemplified by DALL‐E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains—from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization. We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi‐structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low‐hanging fruits that are ripe for research.
doi_str_mv 10.1111/cgf.14841
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972705893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4441-a9525cdc1803897bac8b09760e5a37d182e8655c6d61969d8f6f4af51fe1e43e3</originalsourceid><addsrcrecordid>eNp1kUFPHCEUx4lpo6v24BdoSHqxh1WYAQZ6MWat2yYaL22vhGUeuxgWtjCjsZ9e7Fpjm5QLhPfLL--9P0JHlJzQek7t0p1QJhndQRPKRDeVgqs3aEJofXeE8z20X8otIYR1gu-ivVZywltCJwguUlrjlPEFBG99GkuEUj7h2cqEAHEJBZvY45vNJuVhjH7w9cdV_ocvown-lxl8ithHPKwAny8BJ4fnECHXwh3g69RDKIforTOhwLvn-wB9v_z8bfZlenUz_zo7v5paxhidGsUbbntLJWml6hbGygVRnSDATdv1VDZQJ-NW9IIqoXrphGPGceqAAmuhPUBnW-9mXKyhtxCHbILeZL82-UEn4_XflehXepnuNCWKCalkNRw_G3L6OUIZ9NoXCyGYCHU5ulFdUzcqVVvRD_-gt2nMsc6nG9koSRrSPFEft5TNqZQM7qUbSvRTerqmp3-nV9n3r9t_If_EVYHTLXDvAzz836Rn88ut8hF7bKRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829802023</pqid></control><display><type>article</type><title>Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Schetinger, V. ; Di Bartolomeo, S. ; El‐Assady, M. ; McNutt, A. ; Miller, M. ; Passos, J. P. A. ; Adams, J. L.</creator><creatorcontrib>Schetinger, V. ; Di Bartolomeo, S. ; El‐Assady, M. ; McNutt, A. ; Miller, M. ; Passos, J. P. A. ; Adams, J. L.</creatorcontrib><description>Generative text‐to‐image models (as exemplified by DALL‐E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains—from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization. We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi‐structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low‐hanging fruits that are ripe for research.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14841</identifier><identifier>PMID: 38505301</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Domains ; Visualization ; Visualization and Machine Learning ; Workflow</subject><ispartof>Computer graphics forum, 2023-06, Vol.42 (3), p.423-435</ispartof><rights>2023 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4441-a9525cdc1803897bac8b09760e5a37d182e8655c6d61969d8f6f4af51fe1e43e3</citedby><cites>FETCH-LOGICAL-c4441-a9525cdc1803897bac8b09760e5a37d182e8655c6d61969d8f6f4af51fe1e43e3</cites><orcidid>0000-0002-7826-3500 ; 0000-0001-8255-4258 ; 0000-0002-6281-2173 ; 0000-0002-8116-794X ; 0000-0001-8526-2613 ; 0000-0001-9517-3526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14841$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14841$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38505301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schetinger, V.</creatorcontrib><creatorcontrib>Di Bartolomeo, S.</creatorcontrib><creatorcontrib>El‐Assady, M.</creatorcontrib><creatorcontrib>McNutt, A.</creatorcontrib><creatorcontrib>Miller, M.</creatorcontrib><creatorcontrib>Passos, J. P. A.</creatorcontrib><creatorcontrib>Adams, J. L.</creatorcontrib><title>Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models</title><title>Computer graphics forum</title><addtitle>Comput Graph Forum</addtitle><description>Generative text‐to‐image models (as exemplified by DALL‐E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains—from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization. We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi‐structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low‐hanging fruits that are ripe for research.</description><subject>Domains</subject><subject>Visualization</subject><subject>Visualization and Machine Learning</subject><subject>Workflow</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUFPHCEUx4lpo6v24BdoSHqxh1WYAQZ6MWat2yYaL22vhGUeuxgWtjCjsZ9e7Fpjm5QLhPfLL--9P0JHlJzQek7t0p1QJhndQRPKRDeVgqs3aEJofXeE8z20X8otIYR1gu-ivVZywltCJwguUlrjlPEFBG99GkuEUj7h2cqEAHEJBZvY45vNJuVhjH7w9cdV_ocvown-lxl8ithHPKwAny8BJ4fnECHXwh3g69RDKIforTOhwLvn-wB9v_z8bfZlenUz_zo7v5paxhidGsUbbntLJWml6hbGygVRnSDATdv1VDZQJ-NW9IIqoXrphGPGceqAAmuhPUBnW-9mXKyhtxCHbILeZL82-UEn4_XflehXepnuNCWKCalkNRw_G3L6OUIZ9NoXCyGYCHU5ulFdUzcqVVvRD_-gt2nMsc6nG9koSRrSPFEft5TNqZQM7qUbSvRTerqmp3-nV9n3r9t_If_EVYHTLXDvAzz836Rn88ut8hF7bKRa</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Schetinger, V.</creator><creator>Di Bartolomeo, S.</creator><creator>El‐Assady, M.</creator><creator>McNutt, A.</creator><creator>Miller, M.</creator><creator>Passos, J. P. A.</creator><creator>Adams, J. L.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7826-3500</orcidid><orcidid>https://orcid.org/0000-0001-8255-4258</orcidid><orcidid>https://orcid.org/0000-0002-6281-2173</orcidid><orcidid>https://orcid.org/0000-0002-8116-794X</orcidid><orcidid>https://orcid.org/0000-0001-8526-2613</orcidid><orcidid>https://orcid.org/0000-0001-9517-3526</orcidid></search><sort><creationdate>202306</creationdate><title>Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models</title><author>Schetinger, V. ; Di Bartolomeo, S. ; El‐Assady, M. ; McNutt, A. ; Miller, M. ; Passos, J. P. A. ; Adams, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4441-a9525cdc1803897bac8b09760e5a37d182e8655c6d61969d8f6f4af51fe1e43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Domains</topic><topic>Visualization</topic><topic>Visualization and Machine Learning</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schetinger, V.</creatorcontrib><creatorcontrib>Di Bartolomeo, S.</creatorcontrib><creatorcontrib>El‐Assady, M.</creatorcontrib><creatorcontrib>McNutt, A.</creatorcontrib><creatorcontrib>Miller, M.</creatorcontrib><creatorcontrib>Passos, J. P. A.</creatorcontrib><creatorcontrib>Adams, J. L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schetinger, V.</au><au>Di Bartolomeo, S.</au><au>El‐Assady, M.</au><au>McNutt, A.</au><au>Miller, M.</au><au>Passos, J. P. A.</au><au>Adams, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Comput Graph Forum</addtitle><date>2023-06</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>423</spage><epage>435</epage><pages>423-435</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Generative text‐to‐image models (as exemplified by DALL‐E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains—from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization. We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi‐structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low‐hanging fruits that are ripe for research.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38505301</pmid><doi>10.1111/cgf.14841</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7826-3500</orcidid><orcidid>https://orcid.org/0000-0001-8255-4258</orcidid><orcidid>https://orcid.org/0000-0002-6281-2173</orcidid><orcidid>https://orcid.org/0000-0002-8116-794X</orcidid><orcidid>https://orcid.org/0000-0001-8526-2613</orcidid><orcidid>https://orcid.org/0000-0001-9517-3526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2023-06, Vol.42 (3), p.423-435
issn 0167-7055
1467-8659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946898
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Domains
Visualization
Visualization and Machine Learning
Workflow
title Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doom%20or%20Deliciousness:%20Challenges%20and%20Opportunities%20for%20Visualization%20in%20the%20Age%20of%20Generative%20Models&rft.jtitle=Computer%20graphics%20forum&rft.au=Schetinger,%20V.&rft.date=2023-06&rft.volume=42&rft.issue=3&rft.spage=423&rft.epage=435&rft.pages=423-435&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14841&rft_dat=%3Cproquest_pubme%3E2972705893%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829802023&rft_id=info:pmid/38505301&rfr_iscdi=true