Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills
An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-03, Vol.121 (11), p.e2311798121-e2311798121 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2311798121 |
---|---|
container_issue | 11 |
container_start_page | e2311798121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Brizzolara, Stefano Naudascher, Robert Rosti, Marco Edoardo Stocker, Roman Boffetta, Guido Mazzino, Andrea Holzner, Markus |
description | An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria. |
doi_str_mv | 10.1073/pnas.2311798121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938286150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-a1f28a82c7105db5b7af8dc3cc648c4772756eb07c27da6410727187dc0432cc3</originalsourceid><addsrcrecordid>eNpdkUtLxTAQhYMoen2s3UnBjZvqJE2a1I2I-LggCKIrFyFN02skbWrSCv57c33ragLny2HOHIR2MRxi4MXR0Kt4SAqMeSUwwStohqHCeUkrWEUzAMJzQQndQJsxPgFAxQSso41CUEpwSWfoYd51NmpbO5Pdqldn7OIxv0sPH7JxCvXkTK_NcTbvBme1Gq3vY9YmsVZ6NMEqlzVmEVTzLmW2z7x1WRysc3EbrbXKRbPzObfQ_cX53dlVfn1zOT87vc41JTDmCrdEKEE0x8CamtVctaLRhdYlFZpyTjgrTQ1cE96okqbghGPBGw20IFoXW-jkw3eY6s402vRjUE4OwXYqvEqvrPyr9PZRLvyLTLeiTLAyORx8OgT_PJk4yuVRjHOqN36KklSFIKLEDBK6_w998lPoU75EMc4ZByYSdfRB6eBjDKb93gaDXDYnl83Jn-bSj73fIb75r6qKN60Flfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957757058</pqid></control><display><type>article</type><title>Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills</title><source>PubMed (Medline)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brizzolara, Stefano ; Naudascher, Robert ; Rosti, Marco Edoardo ; Stocker, Roman ; Boffetta, Guido ; Mazzino, Andrea ; Holzner, Markus</creator><creatorcontrib>Brizzolara, Stefano ; Naudascher, Robert ; Rosti, Marco Edoardo ; Stocker, Roman ; Boffetta, Guido ; Mazzino, Andrea ; Holzner, Markus</creatorcontrib><description>An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2311798121</identifier><identifier>PMID: 38442164</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Biodegradation ; Biological Sciences ; Capillary waves ; Deep water ; Density stratification ; Emulsification ; Fluid dynamics ; Fluid flow ; Gravitational effects ; Gravity effects ; Kinetic energy ; Miscibility ; Oil spills ; Oils & fats ; Physical Sciences ; Surface energy ; Surface properties ; Surface tension ; Turbulence ; Turbulent flow ; Verification</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2311798121-e2311798121</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-a1f28a82c7105db5b7af8dc3cc648c4772756eb07c27da6410727187dc0432cc3</cites><orcidid>0000-0002-3199-0508 ; 0000-0003-0170-2891 ; 0009-0001-6169-1701 ; 0000-0002-9004-2292 ; 0000-0002-2534-7751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945856/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945856/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38442164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brizzolara, Stefano</creatorcontrib><creatorcontrib>Naudascher, Robert</creatorcontrib><creatorcontrib>Rosti, Marco Edoardo</creatorcontrib><creatorcontrib>Stocker, Roman</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Mazzino, Andrea</creatorcontrib><creatorcontrib>Holzner, Markus</creatorcontrib><title>Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.</description><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biological Sciences</subject><subject>Capillary waves</subject><subject>Deep water</subject><subject>Density stratification</subject><subject>Emulsification</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gravitational effects</subject><subject>Gravity effects</subject><subject>Kinetic energy</subject><subject>Miscibility</subject><subject>Oil spills</subject><subject>Oils & fats</subject><subject>Physical Sciences</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface tension</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Verification</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxTAQhYMoen2s3UnBjZvqJE2a1I2I-LggCKIrFyFN02skbWrSCv57c33ragLny2HOHIR2MRxi4MXR0Kt4SAqMeSUwwStohqHCeUkrWEUzAMJzQQndQJsxPgFAxQSso41CUEpwSWfoYd51NmpbO5Pdqldn7OIxv0sPH7JxCvXkTK_NcTbvBme1Gq3vY9YmsVZ6NMEqlzVmEVTzLmW2z7x1WRysc3EbrbXKRbPzObfQ_cX53dlVfn1zOT87vc41JTDmCrdEKEE0x8CamtVctaLRhdYlFZpyTjgrTQ1cE96okqbghGPBGw20IFoXW-jkw3eY6s402vRjUE4OwXYqvEqvrPyr9PZRLvyLTLeiTLAyORx8OgT_PJk4yuVRjHOqN36KklSFIKLEDBK6_w998lPoU75EMc4ZByYSdfRB6eBjDKb93gaDXDYnl83Jn-bSj73fIb75r6qKN60Flfc</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Brizzolara, Stefano</creator><creator>Naudascher, Robert</creator><creator>Rosti, Marco Edoardo</creator><creator>Stocker, Roman</creator><creator>Boffetta, Guido</creator><creator>Mazzino, Andrea</creator><creator>Holzner, Markus</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3199-0508</orcidid><orcidid>https://orcid.org/0000-0003-0170-2891</orcidid><orcidid>https://orcid.org/0009-0001-6169-1701</orcidid><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid></search><sort><creationdate>20240312</creationdate><title>Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills</title><author>Brizzolara, Stefano ; Naudascher, Robert ; Rosti, Marco Edoardo ; Stocker, Roman ; Boffetta, Guido ; Mazzino, Andrea ; Holzner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-a1f28a82c7105db5b7af8dc3cc648c4772756eb07c27da6410727187dc0432cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biological Sciences</topic><topic>Capillary waves</topic><topic>Deep water</topic><topic>Density stratification</topic><topic>Emulsification</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gravitational effects</topic><topic>Gravity effects</topic><topic>Kinetic energy</topic><topic>Miscibility</topic><topic>Oil spills</topic><topic>Oils & fats</topic><topic>Physical Sciences</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface tension</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizzolara, Stefano</creatorcontrib><creatorcontrib>Naudascher, Robert</creatorcontrib><creatorcontrib>Rosti, Marco Edoardo</creatorcontrib><creatorcontrib>Stocker, Roman</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Mazzino, Andrea</creatorcontrib><creatorcontrib>Holzner, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizzolara, Stefano</au><au>Naudascher, Robert</au><au>Rosti, Marco Edoardo</au><au>Stocker, Roman</au><au>Boffetta, Guido</au><au>Mazzino, Andrea</au><au>Holzner, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>121</volume><issue>11</issue><spage>e2311798121</spage><epage>e2311798121</epage><pages>e2311798121-e2311798121</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38442164</pmid><doi>10.1073/pnas.2311798121</doi><orcidid>https://orcid.org/0000-0002-3199-0508</orcidid><orcidid>https://orcid.org/0000-0003-0170-2891</orcidid><orcidid>https://orcid.org/0009-0001-6169-1701</orcidid><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2311798121-e2311798121 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945856 |
source | PubMed (Medline); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Biodegradation Biological Sciences Capillary waves Deep water Density stratification Emulsification Fluid dynamics Fluid flow Gravitational effects Gravity effects Kinetic energy Miscibility Oil spills Oils & fats Physical Sciences Surface energy Surface properties Surface tension Turbulence Turbulent flow Verification |
title | Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immiscible%20Rayleigh-Taylor%20turbulence:%20Implications%20for%20bacterial%20degradation%20in%20oil%20spills&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brizzolara,%20Stefano&rft.date=2024-03-12&rft.volume=121&rft.issue=11&rft.spage=e2311798121&rft.epage=e2311798121&rft.pages=e2311798121-e2311798121&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2311798121&rft_dat=%3Cproquest_pubme%3E2938286150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957757058&rft_id=info:pmid/38442164&rfr_iscdi=true |