V2a neurons restore diaphragm function in mice following spinal cord injury

The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-03, Vol.121 (11), p.e2313594121-e2313594121
Hauptverfasser: Jensen, Victoria N, Huffman, Emily E, Jalufka, Frank L, Pritchard, Anna L, Baumgartner, Sarah, Walling, Ian, C Gibbs, Holly, McCreedy, Dylan A, Alilain, Warren J, Crone, Steven A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2313594121
container_issue 11
container_start_page e2313594121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Jensen, Victoria N
Huffman, Emily E
Jalufka, Frank L
Pritchard, Anna L
Baumgartner, Sarah
Walling, Ian
C Gibbs, Holly
McCreedy, Dylan A
Alilain, Warren J
Crone, Steven A
description The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.
doi_str_mv 10.1073/pnas.2313594121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938282726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-38c7b9093acc9eff6a025e12ffd94f5d33d7997fe5b1111b683c376481c0c31d3</originalsourceid><addsrcrecordid>eNpdkTlPxDAQhS0EguWo6ZAlGpqAr8R2hdCKSyDRAK3ldezFq8QO9gbEv8crbqaZYr55mjcPgH2MjjHi9GQIOh8TimktGSZ4DUwwkrhqmETrYIIQ4ZVghG2B7ZwXCCFZC7QJtqhgjGBBJuDmkWgY7JhiyDDZvIzJwtbr4SnpeQ_dGMzSxwB9gL03FrrYdfHVhznMgw-6gyamtkwXY3rbBRtOd9nuffYd8HBxfj-9qm7vLq-nZ7eVobxZVlQYPpNIUm2MtM41GpHaYuJcK5mrW0pbLiV3tp7hUrNG0NUiE9ggQ3FLd8Dph-4wznrbGhuWSXdqSL7X6U1F7dXfSfBPah5fVPkNKw9gReHoUyHF57G4Vr3PxnadDjaOWRFJBRGEk6agh__QRRxTcb6ias5rTmpUqJMPyqSYc7Lu-xqM1CoptUpK_SRVNg5-m_jmv6Kh7_lQkAo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957757250</pqid></control><display><type>article</type><title>V2a neurons restore diaphragm function in mice following spinal cord injury</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><creator>Jensen, Victoria N ; Huffman, Emily E ; Jalufka, Frank L ; Pritchard, Anna L ; Baumgartner, Sarah ; Walling, Ian ; C Gibbs, Holly ; McCreedy, Dylan A ; Alilain, Warren J ; Crone, Steven A</creator><creatorcontrib>Jensen, Victoria N ; Huffman, Emily E ; Jalufka, Frank L ; Pritchard, Anna L ; Baumgartner, Sarah ; Walling, Ian ; C Gibbs, Holly ; McCreedy, Dylan A ; Alilain, Warren J ; Crone, Steven A</creatorcontrib><description>The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2313594121</identifier><identifier>PMID: 38442182</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Brain Stem ; Breathing ; Caffeine ; Chemoreception ; Diaphragm ; Excitability ; Firing pattern ; Mice ; Neurons ; Niacinamide ; Recovery ; Recovery of function ; Respiration ; Respiratory function ; Rhythms ; Spinal Cord Injuries</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2313594121-e2313594121</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-38c7b9093acc9eff6a025e12ffd94f5d33d7997fe5b1111b683c376481c0c31d3</cites><orcidid>0000-0002-8766-2319 ; 0000-0003-3704-443X ; 0000-0001-9644-2767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38442182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Victoria N</creatorcontrib><creatorcontrib>Huffman, Emily E</creatorcontrib><creatorcontrib>Jalufka, Frank L</creatorcontrib><creatorcontrib>Pritchard, Anna L</creatorcontrib><creatorcontrib>Baumgartner, Sarah</creatorcontrib><creatorcontrib>Walling, Ian</creatorcontrib><creatorcontrib>C Gibbs, Holly</creatorcontrib><creatorcontrib>McCreedy, Dylan A</creatorcontrib><creatorcontrib>Alilain, Warren J</creatorcontrib><creatorcontrib>Crone, Steven A</creatorcontrib><title>V2a neurons restore diaphragm function in mice following spinal cord injury</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain Stem</subject><subject>Breathing</subject><subject>Caffeine</subject><subject>Chemoreception</subject><subject>Diaphragm</subject><subject>Excitability</subject><subject>Firing pattern</subject><subject>Mice</subject><subject>Neurons</subject><subject>Niacinamide</subject><subject>Recovery</subject><subject>Recovery of function</subject><subject>Respiration</subject><subject>Respiratory function</subject><subject>Rhythms</subject><subject>Spinal Cord Injuries</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTlPxDAQhS0EguWo6ZAlGpqAr8R2hdCKSyDRAK3ldezFq8QO9gbEv8crbqaZYr55mjcPgH2MjjHi9GQIOh8TimktGSZ4DUwwkrhqmETrYIIQ4ZVghG2B7ZwXCCFZC7QJtqhgjGBBJuDmkWgY7JhiyDDZvIzJwtbr4SnpeQ_dGMzSxwB9gL03FrrYdfHVhznMgw-6gyamtkwXY3rbBRtOd9nuffYd8HBxfj-9qm7vLq-nZ7eVobxZVlQYPpNIUm2MtM41GpHaYuJcK5mrW0pbLiV3tp7hUrNG0NUiE9ggQ3FLd8Dph-4wznrbGhuWSXdqSL7X6U1F7dXfSfBPah5fVPkNKw9gReHoUyHF57G4Vr3PxnadDjaOWRFJBRGEk6agh__QRRxTcb6ias5rTmpUqJMPyqSYc7Lu-xqM1CoptUpK_SRVNg5-m_jmv6Kh7_lQkAo</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Jensen, Victoria N</creator><creator>Huffman, Emily E</creator><creator>Jalufka, Frank L</creator><creator>Pritchard, Anna L</creator><creator>Baumgartner, Sarah</creator><creator>Walling, Ian</creator><creator>C Gibbs, Holly</creator><creator>McCreedy, Dylan A</creator><creator>Alilain, Warren J</creator><creator>Crone, Steven A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8766-2319</orcidid><orcidid>https://orcid.org/0000-0003-3704-443X</orcidid><orcidid>https://orcid.org/0000-0001-9644-2767</orcidid></search><sort><creationdate>20240312</creationdate><title>V2a neurons restore diaphragm function in mice following spinal cord injury</title><author>Jensen, Victoria N ; Huffman, Emily E ; Jalufka, Frank L ; Pritchard, Anna L ; Baumgartner, Sarah ; Walling, Ian ; C Gibbs, Holly ; McCreedy, Dylan A ; Alilain, Warren J ; Crone, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-38c7b9093acc9eff6a025e12ffd94f5d33d7997fe5b1111b683c376481c0c31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain Stem</topic><topic>Breathing</topic><topic>Caffeine</topic><topic>Chemoreception</topic><topic>Diaphragm</topic><topic>Excitability</topic><topic>Firing pattern</topic><topic>Mice</topic><topic>Neurons</topic><topic>Niacinamide</topic><topic>Recovery</topic><topic>Recovery of function</topic><topic>Respiration</topic><topic>Respiratory function</topic><topic>Rhythms</topic><topic>Spinal Cord Injuries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Victoria N</creatorcontrib><creatorcontrib>Huffman, Emily E</creatorcontrib><creatorcontrib>Jalufka, Frank L</creatorcontrib><creatorcontrib>Pritchard, Anna L</creatorcontrib><creatorcontrib>Baumgartner, Sarah</creatorcontrib><creatorcontrib>Walling, Ian</creatorcontrib><creatorcontrib>C Gibbs, Holly</creatorcontrib><creatorcontrib>McCreedy, Dylan A</creatorcontrib><creatorcontrib>Alilain, Warren J</creatorcontrib><creatorcontrib>Crone, Steven A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Victoria N</au><au>Huffman, Emily E</au><au>Jalufka, Frank L</au><au>Pritchard, Anna L</au><au>Baumgartner, Sarah</au><au>Walling, Ian</au><au>C Gibbs, Holly</au><au>McCreedy, Dylan A</au><au>Alilain, Warren J</au><au>Crone, Steven A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>V2a neurons restore diaphragm function in mice following spinal cord injury</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>121</volume><issue>11</issue><spage>e2313594121</spage><epage>e2313594121</epage><pages>e2313594121-e2313594121</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38442182</pmid><doi>10.1073/pnas.2313594121</doi><orcidid>https://orcid.org/0000-0002-8766-2319</orcidid><orcidid>https://orcid.org/0000-0003-3704-443X</orcidid><orcidid>https://orcid.org/0000-0001-9644-2767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2313594121-e2313594121
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945804
source PubMed (Medline); MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection
subjects Animals
Biological Sciences
Brain Stem
Breathing
Caffeine
Chemoreception
Diaphragm
Excitability
Firing pattern
Mice
Neurons
Niacinamide
Recovery
Recovery of function
Respiration
Respiratory function
Rhythms
Spinal Cord Injuries
title V2a neurons restore diaphragm function in mice following spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=V2a%20neurons%20restore%20diaphragm%20function%20in%20mice%20following%20spinal%20cord%20injury&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jensen,%20Victoria%20N&rft.date=2024-03-12&rft.volume=121&rft.issue=11&rft.spage=e2313594121&rft.epage=e2313594121&rft.pages=e2313594121-e2313594121&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2313594121&rft_dat=%3Cproquest_pubme%3E2938282726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957757250&rft_id=info:pmid/38442182&rfr_iscdi=true