CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer

PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-03, Vol.121 (11), p.e2315989121-e2315989121
Hauptverfasser: Kar, Anwesha, Ghosh, Puspendu, Gautam, Anupam, Chowdhury, Snehanshu, Basak, Debashree, Sarkar, Ishita, Bhoumik, Arpita, Barman, Shubhrajit, Chakraborty, Paramita, Mukhopadhyay, Asima, Mehrotra, Shikhar, Ganesan, Senthil Kumar, Paul, Sandip, Chatterjee, Shilpak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2315989121
container_issue 11
container_start_page e2315989121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Kar, Anwesha
Ghosh, Puspendu
Gautam, Anupam
Chowdhury, Snehanshu
Basak, Debashree
Sarkar, Ishita
Bhoumik, Arpita
Barman, Shubhrajit
Chakraborty, Paramita
Mukhopadhyay, Asima
Mehrotra, Shikhar
Ganesan, Senthil Kumar
Paul, Sandip
Chatterjee, Shilpak
description PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8 T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8 T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8 T cells, revealed that CD38-expressing CD8 T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8 T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8 T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8 T cells elevated intracellular Ca levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8 T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.
doi_str_mv 10.1073/pnas.2315989121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957757107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi0EoiFw5oYscUFC245fsX1CVcJLqgSqyhFZtnc2dbXxLvYGkf-eDS3lcZrD_Oab-eYj5DmDUwZanI3Z11MumLLGMs4ekAUDy5qVtPCQLAC4bozk8oQ8qfUGAKwy8JicCCMVs9IsyNf1Rpjm8nDJqf-RarPDNvkJW1rTNvs-5S1NuxFbrHS9MfQ1vaIR-54WrOOQK9JpoD5Pqfm8YXS6xuLHA02ZRp8jlqfkUef7is_u6pJ8eff2av2hufj0_uP6_KKJkvOpsatWtCuAIEEb0UWPMnadFm3Q2CoVjO0CIEcPmgcfotWt6II3CmUnAlNiSd7c6o77MDuImKfiezeWtPPl4Aaf3L-dnK7ddvju5m9JNe-cFV7dKZTh2x7r5HapHp36jMO-Om6V1NoChxl9-R96M-zL_KxflNZKH6NZkrNbKpah1oLd_TUM3BFwx-zcn-zmiRd_m7jnf4clfgKKfJUB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957757107</pqid></control><display><type>article</type><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</creator><creatorcontrib>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</creatorcontrib><description>PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8 T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8 T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8 T cells, revealed that CD38-expressing CD8 T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8 T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8 T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8 T cells elevated intracellular Ca levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8 T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2315989121</identifier><identifier>PMID: 38451948</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; AKT protein ; Animals ; Biological Sciences ; Calcium (intracellular) ; Calcium channels ; Calcium ions ; Cancer ; CD38 antigen ; CD8 antigen ; CD8-Positive T-Lymphocytes - metabolism ; Cell differentiation ; Cytotoxicity ; Differentiation ; Effectiveness ; Gene sequencing ; Hepatocyte nuclear factor 1 ; Immunotherapy ; Lymphocytes ; Lymphocytes T ; Malignancy ; Mice ; Molecular modelling ; Neoplasms - drug therapy ; Neoplasms - metabolism ; PD-1 protein ; Proto-Oncogene Proteins c-akt - metabolism ; Ryanodine Receptor Calcium Release Channel - metabolism ; Ryanodine receptors ; Sequence analysis ; T-Lymphocyte Subsets - metabolism ; Therapy ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2315989121-e2315989121</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</citedby><cites>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</cites><orcidid>0000-0003-0920-2306 ; 0000-0003-0761-9562 ; 0009-0006-0981-4424 ; 0000-0002-4455-6276 ; 0000-0002-6460-6525 ; 0000-0001-7406-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38451948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kar, Anwesha</creatorcontrib><creatorcontrib>Ghosh, Puspendu</creatorcontrib><creatorcontrib>Gautam, Anupam</creatorcontrib><creatorcontrib>Chowdhury, Snehanshu</creatorcontrib><creatorcontrib>Basak, Debashree</creatorcontrib><creatorcontrib>Sarkar, Ishita</creatorcontrib><creatorcontrib>Bhoumik, Arpita</creatorcontrib><creatorcontrib>Barman, Shubhrajit</creatorcontrib><creatorcontrib>Chakraborty, Paramita</creatorcontrib><creatorcontrib>Mukhopadhyay, Asima</creatorcontrib><creatorcontrib>Mehrotra, Shikhar</creatorcontrib><creatorcontrib>Ganesan, Senthil Kumar</creatorcontrib><creatorcontrib>Paul, Sandip</creatorcontrib><creatorcontrib>Chatterjee, Shilpak</creatorcontrib><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8 T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8 T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8 T cells, revealed that CD38-expressing CD8 T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8 T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8 T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8 T cells elevated intracellular Ca levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8 T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</description><subject>Ablation</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>CD38 antigen</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell differentiation</subject><subject>Cytotoxicity</subject><subject>Differentiation</subject><subject>Effectiveness</subject><subject>Gene sequencing</subject><subject>Hepatocyte nuclear factor 1</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>PD-1 protein</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Ryanodine receptors</subject><subject>Sequence analysis</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>Therapy</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctvEzEQxi0EoiFw5oYscUFC245fsX1CVcJLqgSqyhFZtnc2dbXxLvYGkf-eDS3lcZrD_Oab-eYj5DmDUwZanI3Z11MumLLGMs4ekAUDy5qVtPCQLAC4bozk8oQ8qfUGAKwy8JicCCMVs9IsyNf1Rpjm8nDJqf-RarPDNvkJW1rTNvs-5S1NuxFbrHS9MfQ1vaIR-54WrOOQK9JpoD5Pqfm8YXS6xuLHA02ZRp8jlqfkUef7is_u6pJ8eff2av2hufj0_uP6_KKJkvOpsatWtCuAIEEb0UWPMnadFm3Q2CoVjO0CIEcPmgcfotWt6II3CmUnAlNiSd7c6o77MDuImKfiezeWtPPl4Aaf3L-dnK7ddvju5m9JNe-cFV7dKZTh2x7r5HapHp36jMO-Om6V1NoChxl9-R96M-zL_KxflNZKH6NZkrNbKpah1oLd_TUM3BFwx-zcn-zmiRd_m7jnf4clfgKKfJUB</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Kar, Anwesha</creator><creator>Ghosh, Puspendu</creator><creator>Gautam, Anupam</creator><creator>Chowdhury, Snehanshu</creator><creator>Basak, Debashree</creator><creator>Sarkar, Ishita</creator><creator>Bhoumik, Arpita</creator><creator>Barman, Shubhrajit</creator><creator>Chakraborty, Paramita</creator><creator>Mukhopadhyay, Asima</creator><creator>Mehrotra, Shikhar</creator><creator>Ganesan, Senthil Kumar</creator><creator>Paul, Sandip</creator><creator>Chatterjee, Shilpak</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0920-2306</orcidid><orcidid>https://orcid.org/0000-0003-0761-9562</orcidid><orcidid>https://orcid.org/0009-0006-0981-4424</orcidid><orcidid>https://orcid.org/0000-0002-4455-6276</orcidid><orcidid>https://orcid.org/0000-0002-6460-6525</orcidid><orcidid>https://orcid.org/0000-0001-7406-3598</orcidid></search><sort><creationdate>20240312</creationdate><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><author>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>CD38 antigen</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell differentiation</topic><topic>Cytotoxicity</topic><topic>Differentiation</topic><topic>Effectiveness</topic><topic>Gene sequencing</topic><topic>Hepatocyte nuclear factor 1</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>PD-1 protein</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Ryanodine receptors</topic><topic>Sequence analysis</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kar, Anwesha</creatorcontrib><creatorcontrib>Ghosh, Puspendu</creatorcontrib><creatorcontrib>Gautam, Anupam</creatorcontrib><creatorcontrib>Chowdhury, Snehanshu</creatorcontrib><creatorcontrib>Basak, Debashree</creatorcontrib><creatorcontrib>Sarkar, Ishita</creatorcontrib><creatorcontrib>Bhoumik, Arpita</creatorcontrib><creatorcontrib>Barman, Shubhrajit</creatorcontrib><creatorcontrib>Chakraborty, Paramita</creatorcontrib><creatorcontrib>Mukhopadhyay, Asima</creatorcontrib><creatorcontrib>Mehrotra, Shikhar</creatorcontrib><creatorcontrib>Ganesan, Senthil Kumar</creatorcontrib><creatorcontrib>Paul, Sandip</creatorcontrib><creatorcontrib>Chatterjee, Shilpak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kar, Anwesha</au><au>Ghosh, Puspendu</au><au>Gautam, Anupam</au><au>Chowdhury, Snehanshu</au><au>Basak, Debashree</au><au>Sarkar, Ishita</au><au>Bhoumik, Arpita</au><au>Barman, Shubhrajit</au><au>Chakraborty, Paramita</au><au>Mukhopadhyay, Asima</au><au>Mehrotra, Shikhar</au><au>Ganesan, Senthil Kumar</au><au>Paul, Sandip</au><au>Chatterjee, Shilpak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>121</volume><issue>11</issue><spage>e2315989121</spage><epage>e2315989121</epage><pages>e2315989121-e2315989121</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8 T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8 T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8 T cells, revealed that CD38-expressing CD8 T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8 T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8 T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8 T cells elevated intracellular Ca levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8 T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38451948</pmid><doi>10.1073/pnas.2315989121</doi><orcidid>https://orcid.org/0000-0003-0920-2306</orcidid><orcidid>https://orcid.org/0000-0003-0761-9562</orcidid><orcidid>https://orcid.org/0009-0006-0981-4424</orcidid><orcidid>https://orcid.org/0000-0002-4455-6276</orcidid><orcidid>https://orcid.org/0000-0002-6460-6525</orcidid><orcidid>https://orcid.org/0000-0001-7406-3598</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2315989121-e2315989121
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945783
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
AKT protein
Animals
Biological Sciences
Calcium (intracellular)
Calcium channels
Calcium ions
Cancer
CD38 antigen
CD8 antigen
CD8-Positive T-Lymphocytes - metabolism
Cell differentiation
Cytotoxicity
Differentiation
Effectiveness
Gene sequencing
Hepatocyte nuclear factor 1
Immunotherapy
Lymphocytes
Lymphocytes T
Malignancy
Mice
Molecular modelling
Neoplasms - drug therapy
Neoplasms - metabolism
PD-1 protein
Proto-Oncogene Proteins c-akt - metabolism
Ryanodine Receptor Calcium Release Channel - metabolism
Ryanodine receptors
Sequence analysis
T-Lymphocyte Subsets - metabolism
Therapy
Tumors
title CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD38-RyR2%20axis-mediated%20signaling%20impedes%20CD8%20+%20T%20cell%20response%20to%20anti-PD1%20therapy%20in%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kar,%20Anwesha&rft.date=2024-03-12&rft.volume=121&rft.issue=11&rft.spage=e2315989121&rft.epage=e2315989121&rft.pages=e2315989121-e2315989121&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2315989121&rft_dat=%3Cproquest_pubme%3E2957757107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957757107&rft_id=info:pmid/38451948&rfr_iscdi=true