CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer
PD1 blockade therapy, harnessing the cytotoxic potential of CD8 T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8 T cells into a hypofunctional state known as terminal exhaustion. Despite...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-03, Vol.121 (11), p.e2315989121-e2315989121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2315989121 |
---|---|
container_issue | 11 |
container_start_page | e2315989121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Kar, Anwesha Ghosh, Puspendu Gautam, Anupam Chowdhury, Snehanshu Basak, Debashree Sarkar, Ishita Bhoumik, Arpita Barman, Shubhrajit Chakraborty, Paramita Mukhopadhyay, Asima Mehrotra, Shikhar Ganesan, Senthil Kumar Paul, Sandip Chatterjee, Shilpak |
description | PD1 blockade therapy, harnessing the cytotoxic potential of CD8
T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8
T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8
T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8
T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8
T cells, revealed that CD38-expressing CD8
T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8
T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8
T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8
T cells elevated intracellular Ca
levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8
T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer. |
doi_str_mv | 10.1073/pnas.2315989121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957757107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi0EoiFw5oYscUFC245fsX1CVcJLqgSqyhFZtnc2dbXxLvYGkf-eDS3lcZrD_Oab-eYj5DmDUwZanI3Z11MumLLGMs4ekAUDy5qVtPCQLAC4bozk8oQ8qfUGAKwy8JicCCMVs9IsyNf1Rpjm8nDJqf-RarPDNvkJW1rTNvs-5S1NuxFbrHS9MfQ1vaIR-54WrOOQK9JpoD5Pqfm8YXS6xuLHA02ZRp8jlqfkUef7is_u6pJ8eff2av2hufj0_uP6_KKJkvOpsatWtCuAIEEb0UWPMnadFm3Q2CoVjO0CIEcPmgcfotWt6II3CmUnAlNiSd7c6o77MDuImKfiezeWtPPl4Aaf3L-dnK7ddvju5m9JNe-cFV7dKZTh2x7r5HapHp36jMO-Om6V1NoChxl9-R96M-zL_KxflNZKH6NZkrNbKpah1oLd_TUM3BFwx-zcn-zmiRd_m7jnf4clfgKKfJUB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957757107</pqid></control><display><type>article</type><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</creator><creatorcontrib>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</creatorcontrib><description>PD1 blockade therapy, harnessing the cytotoxic potential of CD8
T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8
T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8
T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8
T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8
T cells, revealed that CD38-expressing CD8
T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8
T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8
T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8
T cells elevated intracellular Ca
levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8
T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2315989121</identifier><identifier>PMID: 38451948</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; AKT protein ; Animals ; Biological Sciences ; Calcium (intracellular) ; Calcium channels ; Calcium ions ; Cancer ; CD38 antigen ; CD8 antigen ; CD8-Positive T-Lymphocytes - metabolism ; Cell differentiation ; Cytotoxicity ; Differentiation ; Effectiveness ; Gene sequencing ; Hepatocyte nuclear factor 1 ; Immunotherapy ; Lymphocytes ; Lymphocytes T ; Malignancy ; Mice ; Molecular modelling ; Neoplasms - drug therapy ; Neoplasms - metabolism ; PD-1 protein ; Proto-Oncogene Proteins c-akt - metabolism ; Ryanodine Receptor Calcium Release Channel - metabolism ; Ryanodine receptors ; Sequence analysis ; T-Lymphocyte Subsets - metabolism ; Therapy ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2315989121-e2315989121</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</citedby><cites>FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</cites><orcidid>0000-0003-0920-2306 ; 0000-0003-0761-9562 ; 0009-0006-0981-4424 ; 0000-0002-4455-6276 ; 0000-0002-6460-6525 ; 0000-0001-7406-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38451948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kar, Anwesha</creatorcontrib><creatorcontrib>Ghosh, Puspendu</creatorcontrib><creatorcontrib>Gautam, Anupam</creatorcontrib><creatorcontrib>Chowdhury, Snehanshu</creatorcontrib><creatorcontrib>Basak, Debashree</creatorcontrib><creatorcontrib>Sarkar, Ishita</creatorcontrib><creatorcontrib>Bhoumik, Arpita</creatorcontrib><creatorcontrib>Barman, Shubhrajit</creatorcontrib><creatorcontrib>Chakraborty, Paramita</creatorcontrib><creatorcontrib>Mukhopadhyay, Asima</creatorcontrib><creatorcontrib>Mehrotra, Shikhar</creatorcontrib><creatorcontrib>Ganesan, Senthil Kumar</creatorcontrib><creatorcontrib>Paul, Sandip</creatorcontrib><creatorcontrib>Chatterjee, Shilpak</creatorcontrib><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>PD1 blockade therapy, harnessing the cytotoxic potential of CD8
T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8
T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8
T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8
T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8
T cells, revealed that CD38-expressing CD8
T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8
T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8
T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8
T cells elevated intracellular Ca
levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8
T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</description><subject>Ablation</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>CD38 antigen</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell differentiation</subject><subject>Cytotoxicity</subject><subject>Differentiation</subject><subject>Effectiveness</subject><subject>Gene sequencing</subject><subject>Hepatocyte nuclear factor 1</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>PD-1 protein</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Ryanodine receptors</subject><subject>Sequence analysis</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>Therapy</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctvEzEQxi0EoiFw5oYscUFC245fsX1CVcJLqgSqyhFZtnc2dbXxLvYGkf-eDS3lcZrD_Oab-eYj5DmDUwZanI3Z11MumLLGMs4ekAUDy5qVtPCQLAC4bozk8oQ8qfUGAKwy8JicCCMVs9IsyNf1Rpjm8nDJqf-RarPDNvkJW1rTNvs-5S1NuxFbrHS9MfQ1vaIR-54WrOOQK9JpoD5Pqfm8YXS6xuLHA02ZRp8jlqfkUef7is_u6pJ8eff2av2hufj0_uP6_KKJkvOpsatWtCuAIEEb0UWPMnadFm3Q2CoVjO0CIEcPmgcfotWt6II3CmUnAlNiSd7c6o77MDuImKfiezeWtPPl4Aaf3L-dnK7ddvju5m9JNe-cFV7dKZTh2x7r5HapHp36jMO-Om6V1NoChxl9-R96M-zL_KxflNZKH6NZkrNbKpah1oLd_TUM3BFwx-zcn-zmiRd_m7jnf4clfgKKfJUB</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Kar, Anwesha</creator><creator>Ghosh, Puspendu</creator><creator>Gautam, Anupam</creator><creator>Chowdhury, Snehanshu</creator><creator>Basak, Debashree</creator><creator>Sarkar, Ishita</creator><creator>Bhoumik, Arpita</creator><creator>Barman, Shubhrajit</creator><creator>Chakraborty, Paramita</creator><creator>Mukhopadhyay, Asima</creator><creator>Mehrotra, Shikhar</creator><creator>Ganesan, Senthil Kumar</creator><creator>Paul, Sandip</creator><creator>Chatterjee, Shilpak</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0920-2306</orcidid><orcidid>https://orcid.org/0000-0003-0761-9562</orcidid><orcidid>https://orcid.org/0009-0006-0981-4424</orcidid><orcidid>https://orcid.org/0000-0002-4455-6276</orcidid><orcidid>https://orcid.org/0000-0002-6460-6525</orcidid><orcidid>https://orcid.org/0000-0001-7406-3598</orcidid></search><sort><creationdate>20240312</creationdate><title>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</title><author>Kar, Anwesha ; Ghosh, Puspendu ; Gautam, Anupam ; Chowdhury, Snehanshu ; Basak, Debashree ; Sarkar, Ishita ; Bhoumik, Arpita ; Barman, Shubhrajit ; Chakraborty, Paramita ; Mukhopadhyay, Asima ; Mehrotra, Shikhar ; Ganesan, Senthil Kumar ; Paul, Sandip ; Chatterjee, Shilpak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-96d3d600b40783fcae4cff73db7ed55b89fb0e2ea072babc97d3fba85e4f3b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>CD38 antigen</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell differentiation</topic><topic>Cytotoxicity</topic><topic>Differentiation</topic><topic>Effectiveness</topic><topic>Gene sequencing</topic><topic>Hepatocyte nuclear factor 1</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>PD-1 protein</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Ryanodine receptors</topic><topic>Sequence analysis</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kar, Anwesha</creatorcontrib><creatorcontrib>Ghosh, Puspendu</creatorcontrib><creatorcontrib>Gautam, Anupam</creatorcontrib><creatorcontrib>Chowdhury, Snehanshu</creatorcontrib><creatorcontrib>Basak, Debashree</creatorcontrib><creatorcontrib>Sarkar, Ishita</creatorcontrib><creatorcontrib>Bhoumik, Arpita</creatorcontrib><creatorcontrib>Barman, Shubhrajit</creatorcontrib><creatorcontrib>Chakraborty, Paramita</creatorcontrib><creatorcontrib>Mukhopadhyay, Asima</creatorcontrib><creatorcontrib>Mehrotra, Shikhar</creatorcontrib><creatorcontrib>Ganesan, Senthil Kumar</creatorcontrib><creatorcontrib>Paul, Sandip</creatorcontrib><creatorcontrib>Chatterjee, Shilpak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kar, Anwesha</au><au>Ghosh, Puspendu</au><au>Gautam, Anupam</au><au>Chowdhury, Snehanshu</au><au>Basak, Debashree</au><au>Sarkar, Ishita</au><au>Bhoumik, Arpita</au><au>Barman, Shubhrajit</au><au>Chakraborty, Paramita</au><au>Mukhopadhyay, Asima</au><au>Mehrotra, Shikhar</au><au>Ganesan, Senthil Kumar</au><au>Paul, Sandip</au><au>Chatterjee, Shilpak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>121</volume><issue>11</issue><spage>e2315989121</spage><epage>e2315989121</epage><pages>e2315989121-e2315989121</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>PD1 blockade therapy, harnessing the cytotoxic potential of CD8
T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8
T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8
T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8
T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8
T cells, revealed that CD38-expressing CD8
T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8
T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8
T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8
T cells elevated intracellular Ca
levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8
T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38451948</pmid><doi>10.1073/pnas.2315989121</doi><orcidid>https://orcid.org/0000-0003-0920-2306</orcidid><orcidid>https://orcid.org/0000-0003-0761-9562</orcidid><orcidid>https://orcid.org/0009-0006-0981-4424</orcidid><orcidid>https://orcid.org/0000-0002-4455-6276</orcidid><orcidid>https://orcid.org/0000-0002-6460-6525</orcidid><orcidid>https://orcid.org/0000-0001-7406-3598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (11), p.e2315989121-e2315989121 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10945783 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ablation AKT protein Animals Biological Sciences Calcium (intracellular) Calcium channels Calcium ions Cancer CD38 antigen CD8 antigen CD8-Positive T-Lymphocytes - metabolism Cell differentiation Cytotoxicity Differentiation Effectiveness Gene sequencing Hepatocyte nuclear factor 1 Immunotherapy Lymphocytes Lymphocytes T Malignancy Mice Molecular modelling Neoplasms - drug therapy Neoplasms - metabolism PD-1 protein Proto-Oncogene Proteins c-akt - metabolism Ryanodine Receptor Calcium Release Channel - metabolism Ryanodine receptors Sequence analysis T-Lymphocyte Subsets - metabolism Therapy Tumors |
title | CD38-RyR2 axis-mediated signaling impedes CD8 + T cell response to anti-PD1 therapy in cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD38-RyR2%20axis-mediated%20signaling%20impedes%20CD8%20+%20T%20cell%20response%20to%20anti-PD1%20therapy%20in%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kar,%20Anwesha&rft.date=2024-03-12&rft.volume=121&rft.issue=11&rft.spage=e2315989121&rft.epage=e2315989121&rft.pages=e2315989121-e2315989121&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2315989121&rft_dat=%3Cproquest_pubme%3E2957757107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957757107&rft_id=info:pmid/38451948&rfr_iscdi=true |