Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation

In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-03, Vol.20 (5), p.2140-2151
Hauptverfasser: Lew-Yee, Juan Felipe Huan, Bonfil-Rivera, Iván Alejandro, Piris, Mario, M. del Campo, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2151
container_issue 5
container_start_page 2140
container_title Journal of chemical theory and computation
container_volume 20
creator Lew-Yee, Juan Felipe Huan
Bonfil-Rivera, Iván Alejandro
Piris, Mario
M. del Campo, Jorge
description In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.
doi_str_mv 10.1021/acs.jctc.3c01194
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10938499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958028569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-bfe3d71695fb6b7b45760f895a820f2fffd1dc2b3bdc91bb90a98def6ed69c6e3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEog_Ys0KW2HTRDH4kjr1C1WgKSBWteKwtPzseZeJgOzD99zjMdARIrK4lf-f4XJ-qeoXgAkGM3kqdFhud9YJoiBBvnlSnqG14zSmmT49nxE6qs5Q2EBLSYPK8OiGMtKRB7LTyq5322RrwJctsE1APYBmmsffDPbjz0SfwSeYpyh7cRuVzmdfToLMPg-wT-OnzGuS1BatdtoMpNp_lYMK2vlvLZMHVOMaw81s58y-qZ65o7MvDPK--Xa--Lj_UN7fvPy6vbmrZUJxr5SwxHaK8dYqqTjVtR6FjvJUMQ4edcwYZjRVRRnOkFIeSM2MdtYZyTS05r97tfcdJba3RdsglvhhjyREfRJBe_H0z-LW4Dz8EgpywhvPicHFwiOH7ZFMWW5-07Xs52DAlgTmmLUYd6wr65h90E6Y4_02hWgYxa-lsCPeUjiGlaN0xDYJiLlKUIsVcpDgUWSSv_9ziKHhsrgCXe-C39PHR__r9AiG1rOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958028569</pqid></control><display><type>article</type><title>Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation</title><source>ACS Publications</source><creator>Lew-Yee, Juan Felipe Huan ; Bonfil-Rivera, Iván Alejandro ; Piris, Mario ; M. del Campo, Jorge</creator><creatorcontrib>Lew-Yee, Juan Felipe Huan ; Bonfil-Rivera, Iván Alejandro ; Piris, Mario ; M. del Campo, Jorge</creatorcontrib><description>In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.3c01194</identifier><identifier>PMID: 38353418</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Approximation ; Configuration interaction ; Coupling ; Excitation ; Mathematical analysis ; Spectroscopy and Excited States</subject><ispartof>Journal of chemical theory and computation, 2024-03, Vol.20 (5), p.2140-2151</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 12, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-bfe3d71695fb6b7b45760f895a820f2fffd1dc2b3bdc91bb90a98def6ed69c6e3</citedby><cites>FETCH-LOGICAL-a462t-bfe3d71695fb6b7b45760f895a820f2fffd1dc2b3bdc91bb90a98def6ed69c6e3</cites><orcidid>0009-0003-8477-976X ; 0000-0002-3908-3144 ; 0000-0003-0222-2953 ; 0000-0002-4195-3487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.3c01194$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.3c01194$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38353418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lew-Yee, Juan Felipe Huan</creatorcontrib><creatorcontrib>Bonfil-Rivera, Iván Alejandro</creatorcontrib><creatorcontrib>Piris, Mario</creatorcontrib><creatorcontrib>M. del Campo, Jorge</creatorcontrib><title>Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.</description><subject>Approximation</subject><subject>Configuration interaction</subject><subject>Coupling</subject><subject>Excitation</subject><subject>Mathematical analysis</subject><subject>Spectroscopy and Excited States</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv1DAUhSMEog_Ys0KW2HTRDH4kjr1C1WgKSBWteKwtPzseZeJgOzD99zjMdARIrK4lf-f4XJ-qeoXgAkGM3kqdFhud9YJoiBBvnlSnqG14zSmmT49nxE6qs5Q2EBLSYPK8OiGMtKRB7LTyq5322RrwJctsE1APYBmmsffDPbjz0SfwSeYpyh7cRuVzmdfToLMPg-wT-OnzGuS1BatdtoMpNp_lYMK2vlvLZMHVOMaw81s58y-qZ65o7MvDPK--Xa--Lj_UN7fvPy6vbmrZUJxr5SwxHaK8dYqqTjVtR6FjvJUMQ4edcwYZjRVRRnOkFIeSM2MdtYZyTS05r97tfcdJba3RdsglvhhjyREfRJBe_H0z-LW4Dz8EgpywhvPicHFwiOH7ZFMWW5-07Xs52DAlgTmmLUYd6wr65h90E6Y4_02hWgYxa-lsCPeUjiGlaN0xDYJiLlKUIsVcpDgUWSSv_9ziKHhsrgCXe-C39PHR__r9AiG1rOE</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Lew-Yee, Juan Felipe Huan</creator><creator>Bonfil-Rivera, Iván Alejandro</creator><creator>Piris, Mario</creator><creator>M. del Campo, Jorge</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0003-8477-976X</orcidid><orcidid>https://orcid.org/0000-0002-3908-3144</orcidid><orcidid>https://orcid.org/0000-0003-0222-2953</orcidid><orcidid>https://orcid.org/0000-0002-4195-3487</orcidid></search><sort><creationdate>20240312</creationdate><title>Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation</title><author>Lew-Yee, Juan Felipe Huan ; Bonfil-Rivera, Iván Alejandro ; Piris, Mario ; M. del Campo, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-bfe3d71695fb6b7b45760f895a820f2fffd1dc2b3bdc91bb90a98def6ed69c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Configuration interaction</topic><topic>Coupling</topic><topic>Excitation</topic><topic>Mathematical analysis</topic><topic>Spectroscopy and Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lew-Yee, Juan Felipe Huan</creatorcontrib><creatorcontrib>Bonfil-Rivera, Iván Alejandro</creatorcontrib><creatorcontrib>Piris, Mario</creatorcontrib><creatorcontrib>M. del Campo, Jorge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lew-Yee, Juan Felipe Huan</au><au>Bonfil-Rivera, Iván Alejandro</au><au>Piris, Mario</au><au>M. del Campo, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>2140</spage><epage>2151</epage><pages>2140-2151</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38353418</pmid><doi>10.1021/acs.jctc.3c01194</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-8477-976X</orcidid><orcidid>https://orcid.org/0000-0002-3908-3144</orcidid><orcidid>https://orcid.org/0000-0003-0222-2953</orcidid><orcidid>https://orcid.org/0000-0002-4195-3487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-03, Vol.20 (5), p.2140-2151
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10938499
source ACS Publications
subjects Approximation
Configuration interaction
Coupling
Excitation
Mathematical analysis
Spectroscopy and Excited States
title Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited%20States%20by%20Coupling%20Piris%20Natural%20Orbital%20Functionals%20with%20the%20Extended%20Random-Phase%20Approximation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Lew-Yee,%20Juan%20Felipe%20Huan&rft.date=2024-03-12&rft.volume=20&rft.issue=5&rft.spage=2140&rft.epage=2151&rft.pages=2140-2151&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.3c01194&rft_dat=%3Cproquest_pubme%3E2958028569%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958028569&rft_id=info:pmid/38353418&rfr_iscdi=true