The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component

The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-02, Vol.17 (5), p.1083
Hauptverfasser: Garwacki, Mikołaj, Cudnik, Igor, Dziadowiec, Damian, Szymczak, Piotr, Andrzejewski, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1083
container_title Materials
container_volume 17
creator Garwacki, Mikołaj
Cudnik, Igor
Dziadowiec, Damian
Szymczak, Piotr
Andrzejewski, Jacek
description The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.
doi_str_mv 10.3390/ma17051083
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10935412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786437762</galeid><sourcerecordid>A786437762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-19078acb0a09d4302de49ad956bb5f4b4574662af6d88b5d1ee811bdf17edae93</originalsourceid><addsrcrecordid>eNpdktFu0zAUhiMEYtPYDQ-ALHEzkDrs2k7iK9SVrSBtohKduIxO4pPWkxMH26nU99oDzqVjDOwLH9mf__8c-2TZW0bPOVf0UwesoJLRkr_IjplS-YQpIV4-i4-y0xDuaBqcs3KqXmdHvBQFl1IeZ_erDZIvuEXrhg77SFxLfowhgumhtkiWzu4wbnYWeyQr9Dhs4gYsRCQLu2ucnVxAQE3OlperxQdykTgdSOs8mWltotkiuYF-bKGJozf9miy9azCEFE721rcB95Y3o43Gwi4ZaHLljCU_ISQPCCQm6rcsmbtucH1K8k32qgUb8PRxPclury5X86-T6--Lb_PZ9aQRVMZUPC1KaGoKVGnB6VSjUKCVzOtatqIWshB5PoU212VZS80QS8Zq3bICNaDiJ9nng-4w1h3qJll7sNXgTQd-Vzkw1b8nvdlUa7etGFVcCjZNCmePCt79GjHEqjOhQWuhRzeGapqSydNnFGVC3_-H3rnR96m-PSUVzdMvJ-r8QK3BYmX61iXjJk2NnWnS67Qm7c-KMhe8KPJ9Bh8PFxrvQvDYPqXPaLXvoOpvByX43fOCn9A__cIfAJu9w6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955906510</pqid></control><display><type>article</type><title>The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Garwacki, Mikołaj ; Cudnik, Igor ; Dziadowiec, Damian ; Szymczak, Piotr ; Andrzejewski, Jacek</creator><creatorcontrib>Garwacki, Mikołaj ; Cudnik, Igor ; Dziadowiec, Damian ; Szymczak, Piotr ; Andrzejewski, Jacek</creatorcontrib><description>The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17051083</identifier><identifier>PMID: 38473555</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Annealing ; By products ; Composite materials ; Copolymers ; Elastomers ; Energy consumption ; Foils ; Fused deposition modeling ; Germany ; Glycols ; Impact modifiers ; Injection molding ; Manufacturing ; Mechanical properties ; Performance evaluation ; Poland ; Polyethylene terephthalate ; Polymer blends ; Polymers ; Polyolefins ; Printing ; Recycling ; Recycling (Waste, etc.) ; Rheological properties ; Sustainable development ; Textiles ; Thermal analysis ; Thermal resistance ; Three dimensional printing ; Waste management</subject><ispartof>Materials, 2024-02, Vol.17 (5), p.1083</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-19078acb0a09d4302de49ad956bb5f4b4574662af6d88b5d1ee811bdf17edae93</cites><orcidid>0000-0001-7459-0128 ; 0000-0001-8189-5878 ; 0000-0002-2804-7869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935412/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935412/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38473555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garwacki, Mikołaj</creatorcontrib><creatorcontrib>Cudnik, Igor</creatorcontrib><creatorcontrib>Dziadowiec, Damian</creatorcontrib><creatorcontrib>Szymczak, Piotr</creatorcontrib><creatorcontrib>Andrzejewski, Jacek</creatorcontrib><title>The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Annealing</subject><subject>By products</subject><subject>Composite materials</subject><subject>Copolymers</subject><subject>Elastomers</subject><subject>Energy consumption</subject><subject>Foils</subject><subject>Fused deposition modeling</subject><subject>Germany</subject><subject>Glycols</subject><subject>Impact modifiers</subject><subject>Injection molding</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Performance evaluation</subject><subject>Poland</subject><subject>Polyethylene terephthalate</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Printing</subject><subject>Recycling</subject><subject>Recycling (Waste, etc.)</subject><subject>Rheological properties</subject><subject>Sustainable development</subject><subject>Textiles</subject><subject>Thermal analysis</subject><subject>Thermal resistance</subject><subject>Three dimensional printing</subject><subject>Waste management</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdktFu0zAUhiMEYtPYDQ-ALHEzkDrs2k7iK9SVrSBtohKduIxO4pPWkxMH26nU99oDzqVjDOwLH9mf__8c-2TZW0bPOVf0UwesoJLRkr_IjplS-YQpIV4-i4-y0xDuaBqcs3KqXmdHvBQFl1IeZ_erDZIvuEXrhg77SFxLfowhgumhtkiWzu4wbnYWeyQr9Dhs4gYsRCQLu2ucnVxAQE3OlperxQdykTgdSOs8mWltotkiuYF-bKGJozf9miy9azCEFE721rcB95Y3o43Gwi4ZaHLljCU_ISQPCCQm6rcsmbtucH1K8k32qgUb8PRxPclury5X86-T6--Lb_PZ9aQRVMZUPC1KaGoKVGnB6VSjUKCVzOtatqIWshB5PoU212VZS80QS8Zq3bICNaDiJ9nng-4w1h3qJll7sNXgTQd-Vzkw1b8nvdlUa7etGFVcCjZNCmePCt79GjHEqjOhQWuhRzeGapqSydNnFGVC3_-H3rnR96m-PSUVzdMvJ-r8QK3BYmX61iXjJk2NnWnS67Qm7c-KMhe8KPJ9Bh8PFxrvQvDYPqXPaLXvoOpvByX43fOCn9A__cIfAJu9w6A</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Garwacki, Mikołaj</creator><creator>Cudnik, Igor</creator><creator>Dziadowiec, Damian</creator><creator>Szymczak, Piotr</creator><creator>Andrzejewski, Jacek</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7459-0128</orcidid><orcidid>https://orcid.org/0000-0001-8189-5878</orcidid><orcidid>https://orcid.org/0000-0002-2804-7869</orcidid></search><sort><creationdate>20240227</creationdate><title>The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component</title><author>Garwacki, Mikołaj ; Cudnik, Igor ; Dziadowiec, Damian ; Szymczak, Piotr ; Andrzejewski, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-19078acb0a09d4302de49ad956bb5f4b4574662af6d88b5d1ee811bdf17edae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Annealing</topic><topic>By products</topic><topic>Composite materials</topic><topic>Copolymers</topic><topic>Elastomers</topic><topic>Energy consumption</topic><topic>Foils</topic><topic>Fused deposition modeling</topic><topic>Germany</topic><topic>Glycols</topic><topic>Impact modifiers</topic><topic>Injection molding</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Performance evaluation</topic><topic>Poland</topic><topic>Polyethylene terephthalate</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Printing</topic><topic>Recycling</topic><topic>Recycling (Waste, etc.)</topic><topic>Rheological properties</topic><topic>Sustainable development</topic><topic>Textiles</topic><topic>Thermal analysis</topic><topic>Thermal resistance</topic><topic>Three dimensional printing</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garwacki, Mikołaj</creatorcontrib><creatorcontrib>Cudnik, Igor</creatorcontrib><creatorcontrib>Dziadowiec, Damian</creatorcontrib><creatorcontrib>Szymczak, Piotr</creatorcontrib><creatorcontrib>Andrzejewski, Jacek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garwacki, Mikołaj</au><au>Cudnik, Igor</au><au>Dziadowiec, Damian</au><au>Szymczak, Piotr</au><au>Andrzejewski, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>1083</spage><pages>1083-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38473555</pmid><doi>10.3390/ma17051083</doi><orcidid>https://orcid.org/0000-0001-7459-0128</orcidid><orcidid>https://orcid.org/0000-0001-8189-5878</orcidid><orcidid>https://orcid.org/0000-0002-2804-7869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-02, Vol.17 (5), p.1083
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10935412
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects 3-D printers
3D printing
Additive manufacturing
Annealing
By products
Composite materials
Copolymers
Elastomers
Energy consumption
Foils
Fused deposition modeling
Germany
Glycols
Impact modifiers
Injection molding
Manufacturing
Mechanical properties
Performance evaluation
Poland
Polyethylene terephthalate
Polymer blends
Polymers
Polyolefins
Printing
Recycling
Recycling (Waste, etc.)
Rheological properties
Sustainable development
Textiles
Thermal analysis
Thermal resistance
Three dimensional printing
Waste management
title The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Development%20of%20Sustainable%20Polyethylene%20Terephthalate%20Glycol-Based%20(PETG)%20Blends%20for%20Additive%20Manufacturing%20Processing-The%20Use%20of%20Multilayered%20Foil%20Waste%20as%20the%20Blend%20Component&rft.jtitle=Materials&rft.au=Garwacki,%20Miko%C5%82aj&rft.date=2024-02-27&rft.volume=17&rft.issue=5&rft.spage=1083&rft.pages=1083-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17051083&rft_dat=%3Cgale_pubme%3EA786437762%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955906510&rft_id=info:pmid/38473555&rft_galeid=A786437762&rfr_iscdi=true