Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts
Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numeri...
Gespeichert in:
Veröffentlicht in: | Materials 2024-03, Vol.17 (5), p.1201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1201 |
container_title | Materials |
container_volume | 17 |
creator | Fracasso, Michela Gerbaldo, Roberto Ghigo, Gianluca Torsello, Daniele Xing, Yiteng Bernstein, Pierre Noudem, Jacques Gozzelino, Laura |
description | Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (A→) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K. |
doi_str_mv | 10.3390/ma17051201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956684721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4562c8c5b0671f1f82f0394d23522eaad1f92cd90ba4352f259042cd48a264cf3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMottRe_AUBLyKs5ms_cpJarRUqPVjPIbubtCm7mzXZFfrvTWnxay4zzDy8vDMDwCVGt5RydFdLnKIYE4RPwBBznkSYM3b6qx6AsfdbFIJSnBF-DgY0YylNUjIEy6mtW-mMtw20GnYbBWdGVSVcOdm2plnDSW4q0-3209f1A4GyKeF8lztTwkfji-htI1tVwoXc2b7zF-BMy8qr8TGPwPvsaTWdR4vl88t0sogKymgXsTghRVbEOUpSrLHOiEaUs5LQmBAlZYk1J0XJUS5ZaGkSc8RCg2WSJKzQdATuD7ptn9eqLFTTOVmJ1plaup2w0oi_k8ZsxNp-Cox4cJCRoHB9VHD2o1e-E3VYR1WVbJTtvSA8TpJwJ4IDevUP3dreNWG_PRVnPI1JEqibA1U4671T-tsNRmL_K_HzK_oFmzGC_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955897526</pqid></control><display><type>article</type><title>Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Fracasso, Michela ; Gerbaldo, Roberto ; Ghigo, Gianluca ; Torsello, Daniele ; Xing, Yiteng ; Bernstein, Pierre ; Noudem, Jacques ; Gozzelino, Laura</creator><creatorcontrib>Fracasso, Michela ; Gerbaldo, Roberto ; Ghigo, Gianluca ; Torsello, Daniele ; Xing, Yiteng ; Bernstein, Pierre ; Noudem, Jacques ; Gozzelino, Laura</creatorcontrib><description>Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (A→) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17051201</identifier><identifier>PMID: 38473672</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cast iron ; Critical current density ; Cylinders ; Ferromagnetism ; Flux density ; Hall probes ; Iterative methods ; Layouts ; Magnetic fields ; Magnetic flux ; Mathematical models ; Numerical models ; Permanent magnets ; Permeability ; Plasma sintering ; Superconductivity ; Superconductors ; Temperature ; Trapping ; Vector potentials</subject><ispartof>Materials, 2024-03, Vol.17 (5), p.1201</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-4562c8c5b0671f1f82f0394d23522eaad1f92cd90ba4352f259042cd48a264cf3</cites><orcidid>0000-0002-8104-2151 ; 0000-0002-6339-4188 ; 0000-0003-3368-1319 ; 0000-0002-8818-7433 ; 0000-0002-8020-9095 ; 0000-0002-9204-0792 ; 0000-0002-6543-864X ; 0000-0001-9551-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934382/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934382/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Fracasso, Michela</creatorcontrib><creatorcontrib>Gerbaldo, Roberto</creatorcontrib><creatorcontrib>Ghigo, Gianluca</creatorcontrib><creatorcontrib>Torsello, Daniele</creatorcontrib><creatorcontrib>Xing, Yiteng</creatorcontrib><creatorcontrib>Bernstein, Pierre</creatorcontrib><creatorcontrib>Noudem, Jacques</creatorcontrib><creatorcontrib>Gozzelino, Laura</creatorcontrib><title>Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts</title><title>Materials</title><description>Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (A→) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K.</description><subject>Cast iron</subject><subject>Critical current density</subject><subject>Cylinders</subject><subject>Ferromagnetism</subject><subject>Flux density</subject><subject>Hall probes</subject><subject>Iterative methods</subject><subject>Layouts</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Permanent magnets</subject><subject>Permeability</subject><subject>Plasma sintering</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Temperature</subject><subject>Trapping</subject><subject>Vector potentials</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LAzEQhoMottRe_AUBLyKs5ms_cpJarRUqPVjPIbubtCm7mzXZFfrvTWnxay4zzDy8vDMDwCVGt5RydFdLnKIYE4RPwBBznkSYM3b6qx6AsfdbFIJSnBF-DgY0YylNUjIEy6mtW-mMtw20GnYbBWdGVSVcOdm2plnDSW4q0-3209f1A4GyKeF8lztTwkfji-htI1tVwoXc2b7zF-BMy8qr8TGPwPvsaTWdR4vl88t0sogKymgXsTghRVbEOUpSrLHOiEaUs5LQmBAlZYk1J0XJUS5ZaGkSc8RCg2WSJKzQdATuD7ptn9eqLFTTOVmJ1plaup2w0oi_k8ZsxNp-Cox4cJCRoHB9VHD2o1e-E3VYR1WVbJTtvSA8TpJwJ4IDevUP3dreNWG_PRVnPI1JEqibA1U4671T-tsNRmL_K_HzK_oFmzGC_g</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Fracasso, Michela</creator><creator>Gerbaldo, Roberto</creator><creator>Ghigo, Gianluca</creator><creator>Torsello, Daniele</creator><creator>Xing, Yiteng</creator><creator>Bernstein, Pierre</creator><creator>Noudem, Jacques</creator><creator>Gozzelino, Laura</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-2151</orcidid><orcidid>https://orcid.org/0000-0002-6339-4188</orcidid><orcidid>https://orcid.org/0000-0003-3368-1319</orcidid><orcidid>https://orcid.org/0000-0002-8818-7433</orcidid><orcidid>https://orcid.org/0000-0002-8020-9095</orcidid><orcidid>https://orcid.org/0000-0002-9204-0792</orcidid><orcidid>https://orcid.org/0000-0002-6543-864X</orcidid><orcidid>https://orcid.org/0000-0001-9551-1716</orcidid></search><sort><creationdate>20240305</creationdate><title>Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts</title><author>Fracasso, Michela ; Gerbaldo, Roberto ; Ghigo, Gianluca ; Torsello, Daniele ; Xing, Yiteng ; Bernstein, Pierre ; Noudem, Jacques ; Gozzelino, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4562c8c5b0671f1f82f0394d23522eaad1f92cd90ba4352f259042cd48a264cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cast iron</topic><topic>Critical current density</topic><topic>Cylinders</topic><topic>Ferromagnetism</topic><topic>Flux density</topic><topic>Hall probes</topic><topic>Iterative methods</topic><topic>Layouts</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Permanent magnets</topic><topic>Permeability</topic><topic>Plasma sintering</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Temperature</topic><topic>Trapping</topic><topic>Vector potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fracasso, Michela</creatorcontrib><creatorcontrib>Gerbaldo, Roberto</creatorcontrib><creatorcontrib>Ghigo, Gianluca</creatorcontrib><creatorcontrib>Torsello, Daniele</creatorcontrib><creatorcontrib>Xing, Yiteng</creatorcontrib><creatorcontrib>Bernstein, Pierre</creatorcontrib><creatorcontrib>Noudem, Jacques</creatorcontrib><creatorcontrib>Gozzelino, Laura</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fracasso, Michela</au><au>Gerbaldo, Roberto</au><au>Ghigo, Gianluca</au><au>Torsello, Daniele</au><au>Xing, Yiteng</au><au>Bernstein, Pierre</au><au>Noudem, Jacques</au><au>Gozzelino, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts</atitle><jtitle>Materials</jtitle><date>2024-03-05</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>1201</spage><pages>1201-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (A→) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>38473672</pmid><doi>10.3390/ma17051201</doi><orcidid>https://orcid.org/0000-0002-8104-2151</orcidid><orcidid>https://orcid.org/0000-0002-6339-4188</orcidid><orcidid>https://orcid.org/0000-0003-3368-1319</orcidid><orcidid>https://orcid.org/0000-0002-8818-7433</orcidid><orcidid>https://orcid.org/0000-0002-8020-9095</orcidid><orcidid>https://orcid.org/0000-0002-9204-0792</orcidid><orcidid>https://orcid.org/0000-0002-6543-864X</orcidid><orcidid>https://orcid.org/0000-0001-9551-1716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-03, Vol.17 (5), p.1201 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934382 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Cast iron Critical current density Cylinders Ferromagnetism Flux density Hall probes Iterative methods Layouts Magnetic fields Magnetic flux Mathematical models Numerical models Permanent magnets Permeability Plasma sintering Superconductivity Superconductors Temperature Trapping Vector potentials |
title | Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Field%20Trapping%20Ability%20of%20MgB2%20and%20Hybrid%20Disc-Shaped%20Layouts&rft.jtitle=Materials&rft.au=Fracasso,%20Michela&rft.date=2024-03-05&rft.volume=17&rft.issue=5&rft.spage=1201&rft.pages=1201-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17051201&rft_dat=%3Cproquest_pubme%3E2956684721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955897526&rft_id=info:pmid/38473672&rfr_iscdi=true |