Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil

Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-02, Vol.16 (5), p.574
Hauptverfasser: Swiontek Brzezinska, Maria, Shinde, Ambika H, Kaczmarek-Szczepańska, Beata, Jankiewicz, Urszula, Urbaniak, Joanna, Boczkowski, Sławomir, Zasada, Lidia, Ciesielska, Magdalena, Dembińska, Katarzyna, Pałubicka, Krystyna, Michalska-Sionkowska, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as sp. and Considering the outcomes derived from our findings, it is our contention that the application of isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16050574