Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress
Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stre...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.126-126, Article 126 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 1 |
container_start_page | 126 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 81 |
creator | Chen, Jian Dai, Xue-Yan Zhao, Bi-Chen Xu, Xiang-Wen Kang, Jian-Xun Xu, Ya-Ru Li, Jin-Long |
description | Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2–Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/β-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5
+
ISC cell cycle passage through the G1–S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP2
3−33
) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2–Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2–Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI. |
doi_str_mv | 10.1007/s00018-024-05162-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10933158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955964500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8751ebb4c8eea51ab2f21c6403a82594344b43ce834669389b82daee73e541d33</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqXwAiyQJTZsAr7F46wQqkpBGgmEQLCznMxJxsWxB9uB6Y53QLwgT8KZzlAuCxa-SOf7f_ucv6ruM_qYUbp4kimlTNeUy5o2TPF6e6M6ZpLTuqULdvNwV5p_OKru5HyBdKO5ul0dCS0XKKHH1fc30QOJAylrIOfL1_zH12_vQ2HEbl0mLpDsvOtjqJPr18T6j9a7AGTCLVlPvtgCiUzWhYLLhRElBXJxAYuwcejq3TyRBCPsFMXFsHPduNFDyWQOK9SDTf6y9m4AkkuCnO9WtwbrM9w7nCfVu-dnb09f1MtX5y9Pny3rXnJVar1oGHSd7DWAbZjt-MBZryQVVvOmlULKTooetJBKtUK3neYrC7AQ0Ei2EuKkerr33czdBKseQsGuzCa5yaZLE60zf1eCW5sxfjaMtkLgNNHh0cEhxU8zdm4ml3vw3gaIcza8bZTSAqeN6MN_0Is4JxzUFdW0SjaUIsX3VJ9izgmG698wanaxm33sBmM3V7GbLYoe_NnHteRXzgiIPZCxFEZIv9_-j-1PkZK80A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955964500</pqid></control><display><type>article</type><title>Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress</title><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Jian ; Dai, Xue-Yan ; Zhao, Bi-Chen ; Xu, Xiang-Wen ; Kang, Jian-Xun ; Xu, Ya-Ru ; Li, Jin-Long</creator><creatorcontrib>Chen, Jian ; Dai, Xue-Yan ; Zhao, Bi-Chen ; Xu, Xiang-Wen ; Kang, Jian-Xun ; Xu, Ya-Ru ; Li, Jin-Long</creatorcontrib><description>Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2–Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/β-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5
+
ISC cell cycle passage through the G1–S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP2
3−33
) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2–Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2–Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05162-x</identifier><identifier>PMID: 38470510</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Antagonists ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell cycle ; Cell differentiation ; Differentiation ; Digestive system ; Drinking water ; Epithelium ; Gastrointestinal tract ; Glucagon ; Intestine ; Irritable bowel syndrome ; Life Sciences ; Mammals ; Mineral water ; Molecular modelling ; Neonates ; Original ; Original Article ; Regeneration ; Silicon ; siRNA ; Stem cells ; Swine ; Weaning ; β-Catenin</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.126-126, Article 126</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-8751ebb4c8eea51ab2f21c6403a82594344b43ce834669389b82daee73e541d33</cites><orcidid>0000-0002-5133-9165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933158/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41119,41487,42188,42556,51318,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38470510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Dai, Xue-Yan</creatorcontrib><creatorcontrib>Zhao, Bi-Chen</creatorcontrib><creatorcontrib>Xu, Xiang-Wen</creatorcontrib><creatorcontrib>Kang, Jian-Xun</creatorcontrib><creatorcontrib>Xu, Ya-Ru</creatorcontrib><creatorcontrib>Li, Jin-Long</creatorcontrib><title>Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2–Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/β-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5
+
ISC cell cycle passage through the G1–S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP2
3−33
) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2–Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2–Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.</description><subject>Antagonists</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Differentiation</subject><subject>Digestive system</subject><subject>Drinking water</subject><subject>Epithelium</subject><subject>Gastrointestinal tract</subject><subject>Glucagon</subject><subject>Intestine</subject><subject>Irritable bowel syndrome</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mineral water</subject><subject>Molecular modelling</subject><subject>Neonates</subject><subject>Original</subject><subject>Original Article</subject><subject>Regeneration</subject><subject>Silicon</subject><subject>siRNA</subject><subject>Stem cells</subject><subject>Swine</subject><subject>Weaning</subject><subject>β-Catenin</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctu1DAUhiMEoqXwAiyQJTZsAr7F46wQqkpBGgmEQLCznMxJxsWxB9uB6Y53QLwgT8KZzlAuCxa-SOf7f_ucv6ruM_qYUbp4kimlTNeUy5o2TPF6e6M6ZpLTuqULdvNwV5p_OKru5HyBdKO5ul0dCS0XKKHH1fc30QOJAylrIOfL1_zH12_vQ2HEbl0mLpDsvOtjqJPr18T6j9a7AGTCLVlPvtgCiUzWhYLLhRElBXJxAYuwcejq3TyRBCPsFMXFsHPduNFDyWQOK9SDTf6y9m4AkkuCnO9WtwbrM9w7nCfVu-dnb09f1MtX5y9Pny3rXnJVar1oGHSd7DWAbZjt-MBZryQVVvOmlULKTooetJBKtUK3neYrC7AQ0Ei2EuKkerr33czdBKseQsGuzCa5yaZLE60zf1eCW5sxfjaMtkLgNNHh0cEhxU8zdm4ml3vw3gaIcza8bZTSAqeN6MN_0Is4JxzUFdW0SjaUIsX3VJ9izgmG698wanaxm33sBmM3V7GbLYoe_NnHteRXzgiIPZCxFEZIv9_-j-1PkZK80A</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Jian</creator><creator>Dai, Xue-Yan</creator><creator>Zhao, Bi-Chen</creator><creator>Xu, Xiang-Wen</creator><creator>Kang, Jian-Xun</creator><creator>Xu, Ya-Ru</creator><creator>Li, Jin-Long</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5133-9165</orcidid></search><sort><creationdate>20241201</creationdate><title>Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress</title><author>Chen, Jian ; Dai, Xue-Yan ; Zhao, Bi-Chen ; Xu, Xiang-Wen ; Kang, Jian-Xun ; Xu, Ya-Ru ; Li, Jin-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8751ebb4c8eea51ab2f21c6403a82594344b43ce834669389b82daee73e541d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antagonists</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Differentiation</topic><topic>Digestive system</topic><topic>Drinking water</topic><topic>Epithelium</topic><topic>Gastrointestinal tract</topic><topic>Glucagon</topic><topic>Intestine</topic><topic>Irritable bowel syndrome</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mineral water</topic><topic>Molecular modelling</topic><topic>Neonates</topic><topic>Original</topic><topic>Original Article</topic><topic>Regeneration</topic><topic>Silicon</topic><topic>siRNA</topic><topic>Stem cells</topic><topic>Swine</topic><topic>Weaning</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Dai, Xue-Yan</creatorcontrib><creatorcontrib>Zhao, Bi-Chen</creatorcontrib><creatorcontrib>Xu, Xiang-Wen</creatorcontrib><creatorcontrib>Kang, Jian-Xun</creatorcontrib><creatorcontrib>Xu, Ya-Ru</creatorcontrib><creatorcontrib>Li, Jin-Long</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jian</au><au>Dai, Xue-Yan</au><au>Zhao, Bi-Chen</au><au>Xu, Xiang-Wen</au><au>Kang, Jian-Xun</au><au>Xu, Ya-Ru</au><au>Li, Jin-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>126</spage><epage>126</epage><pages>126-126</pages><artnum>126</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2–Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/β-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5
+
ISC cell cycle passage through the G1–S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP2
3−33
) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2–Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2–Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38470510</pmid><doi>10.1007/s00018-024-05162-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5133-9165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.126-126, Article 126 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10933158 |
source | Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Antagonists Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Cell cycle Cell differentiation Differentiation Digestive system Drinking water Epithelium Gastrointestinal tract Glucagon Intestine Irritable bowel syndrome Life Sciences Mammals Mineral water Molecular modelling Neonates Original Original Article Regeneration Silicon siRNA Stem cells Swine Weaning β-Catenin |
title | Role of the GLP2–Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20GLP2%E2%80%93Wnt1%20axis%20in%20silicon-rich%20alkaline%20mineral%20water%20maintaining%20intestinal%20epithelium%20regeneration%20in%20piglets%20under%20early-life%20stress&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Chen,%20Jian&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=126&rft.epage=126&rft.pages=126-126&rft.artnum=126&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05162-x&rft_dat=%3Cproquest_pubme%3E2955964500%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955964500&rft_id=info:pmid/38470510&rfr_iscdi=true |