Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing “in vivo like” physiol...
Gespeichert in:
Veröffentlicht in: | APL bioengineering 2024-03, Vol.8 (1), p.016118-016118-18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 016118-18 |
---|---|
container_issue | 1 |
container_start_page | 016118 |
container_title | APL bioengineering |
container_volume | 8 |
creator | Simmons, Daniel W. Malayath, Ganesh Schuftan, David R. Guo, Jingxuan Oguntuyo, Kasoorelope Ramahdita, Ghiska Sun, Yuwen Jordan, Samuel D. Munsell, Mary K. Kandalaft, Brennan Pear, Missy Rentschler, Stacey L. Huebsch, Nathaniel |
description | Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing “in vivo like” physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2−/− tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants. |
doi_str_mv | 10.1063/5.0160677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10932571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d89cbf04a3fd418da954adb7e76b6d32</doaj_id><sourcerecordid>2956680473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-b333a5112703faa2bb7c6034168849469dbfe158ce3980a777bcc9c65fc95cd53</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1paUKSQ_9A8bENONG3rFMpS9oGAg00OQtZGnuVytZWkgP-93W725Bcepph5uGZgbeq3mF0gZGgl_wCYYGElK-qY8IkbUgr5etn_VF1lvMDQohgqhRBb6sj2jIpGGLHVbiaBj8BJHB18TnPUA8QRyhpqc3k6ttgfsbd1gc_NaROMMzBFKghgC1pXSzZxxCHpY59vZ1HM9X-9semcZD846q0JjkfxyXapUA-rd70JmQ4O9ST6v7L1d3mW3Pz_ev15vNNY5mUpekopYZjTCSivTGk66QViDIs2pYpJpTresC8tUBVi4yUsrNWWcF7q7h1nJ5U13uvi-ZB75IfTVp0NF7_HcQ0aJOKtwG0a5XtesQM7R3DrTOKM-M6CVJ0wlGyuj7tXbu5G8FZmEoy4YX05WbyWz3ER42RooRLvBo-HAwp_pohFz36bCEEM0GcsyaKC9GiNa4V_bhHbYo5J-if7mCk_6StuT6kvbLvnz_2RP7LdgXO90C2vpji4_Qf229sX7RY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956680473</pqid></control><display><type>article</type><title>Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Simmons, Daniel W. ; Malayath, Ganesh ; Schuftan, David R. ; Guo, Jingxuan ; Oguntuyo, Kasoorelope ; Ramahdita, Ghiska ; Sun, Yuwen ; Jordan, Samuel D. ; Munsell, Mary K. ; Kandalaft, Brennan ; Pear, Missy ; Rentschler, Stacey L. ; Huebsch, Nathaniel</creator><creatorcontrib>Simmons, Daniel W. ; Malayath, Ganesh ; Schuftan, David R. ; Guo, Jingxuan ; Oguntuyo, Kasoorelope ; Ramahdita, Ghiska ; Sun, Yuwen ; Jordan, Samuel D. ; Munsell, Mary K. ; Kandalaft, Brennan ; Pear, Missy ; Rentschler, Stacey L. ; Huebsch, Nathaniel</creatorcontrib><description>Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing “in vivo like” physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2−/− tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.</description><identifier>ISSN: 2473-2877</identifier><identifier>EISSN: 2473-2877</identifier><identifier>DOI: 10.1063/5.0160677</identifier><identifier>PMID: 38476404</identifier><identifier>CODEN: ABPID9</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><ispartof>APL bioengineering, 2024-03, Vol.8 (1), p.016118-016118-18</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-b333a5112703faa2bb7c6034168849469dbfe158ce3980a777bcc9c65fc95cd53</citedby><cites>FETCH-LOGICAL-c477t-b333a5112703faa2bb7c6034168849469dbfe158ce3980a777bcc9c65fc95cd53</cites><orcidid>0000-0003-3455-7512 ; 0000-0002-3344-2839 ; 0009-0009-0854-7979 ; 0009-0007-2692-8746 ; 0000-0002-8587-6954 ; 0000-0003-4848-6786 ; 0000-0002-3509-4962 ; 0000-0002-1744-1238 ; 0000-0003-4523-548X ; 0000-0002-3329-0214 ; 0000-0001-8479-8096 ; 0000-0002-2143-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38476404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simmons, Daniel W.</creatorcontrib><creatorcontrib>Malayath, Ganesh</creatorcontrib><creatorcontrib>Schuftan, David R.</creatorcontrib><creatorcontrib>Guo, Jingxuan</creatorcontrib><creatorcontrib>Oguntuyo, Kasoorelope</creatorcontrib><creatorcontrib>Ramahdita, Ghiska</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Jordan, Samuel D.</creatorcontrib><creatorcontrib>Munsell, Mary K.</creatorcontrib><creatorcontrib>Kandalaft, Brennan</creatorcontrib><creatorcontrib>Pear, Missy</creatorcontrib><creatorcontrib>Rentschler, Stacey L.</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><title>Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes</title><title>APL bioengineering</title><addtitle>APL Bioeng</addtitle><description>Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing “in vivo like” physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2−/− tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.</description><issn>2473-2877</issn><issn>2473-2877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1paUKSQ_9A8bENONG3rFMpS9oGAg00OQtZGnuVytZWkgP-93W725Bcepph5uGZgbeq3mF0gZGgl_wCYYGElK-qY8IkbUgr5etn_VF1lvMDQohgqhRBb6sj2jIpGGLHVbiaBj8BJHB18TnPUA8QRyhpqc3k6ttgfsbd1gc_NaROMMzBFKghgC1pXSzZxxCHpY59vZ1HM9X-9semcZD846q0JjkfxyXapUA-rd70JmQ4O9ST6v7L1d3mW3Pz_ev15vNNY5mUpekopYZjTCSivTGk66QViDIs2pYpJpTresC8tUBVi4yUsrNWWcF7q7h1nJ5U13uvi-ZB75IfTVp0NF7_HcQ0aJOKtwG0a5XtesQM7R3DrTOKM-M6CVJ0wlGyuj7tXbu5G8FZmEoy4YX05WbyWz3ER42RooRLvBo-HAwp_pohFz36bCEEM0GcsyaKC9GiNa4V_bhHbYo5J-if7mCk_6StuT6kvbLvnz_2RP7LdgXO90C2vpji4_Qf229sX7RY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Simmons, Daniel W.</creator><creator>Malayath, Ganesh</creator><creator>Schuftan, David R.</creator><creator>Guo, Jingxuan</creator><creator>Oguntuyo, Kasoorelope</creator><creator>Ramahdita, Ghiska</creator><creator>Sun, Yuwen</creator><creator>Jordan, Samuel D.</creator><creator>Munsell, Mary K.</creator><creator>Kandalaft, Brennan</creator><creator>Pear, Missy</creator><creator>Rentschler, Stacey L.</creator><creator>Huebsch, Nathaniel</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3455-7512</orcidid><orcidid>https://orcid.org/0000-0002-3344-2839</orcidid><orcidid>https://orcid.org/0009-0009-0854-7979</orcidid><orcidid>https://orcid.org/0009-0007-2692-8746</orcidid><orcidid>https://orcid.org/0000-0002-8587-6954</orcidid><orcidid>https://orcid.org/0000-0003-4848-6786</orcidid><orcidid>https://orcid.org/0000-0002-3509-4962</orcidid><orcidid>https://orcid.org/0000-0002-1744-1238</orcidid><orcidid>https://orcid.org/0000-0003-4523-548X</orcidid><orcidid>https://orcid.org/0000-0002-3329-0214</orcidid><orcidid>https://orcid.org/0000-0001-8479-8096</orcidid><orcidid>https://orcid.org/0000-0002-2143-2991</orcidid></search><sort><creationdate>20240301</creationdate><title>Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes</title><author>Simmons, Daniel W. ; Malayath, Ganesh ; Schuftan, David R. ; Guo, Jingxuan ; Oguntuyo, Kasoorelope ; Ramahdita, Ghiska ; Sun, Yuwen ; Jordan, Samuel D. ; Munsell, Mary K. ; Kandalaft, Brennan ; Pear, Missy ; Rentschler, Stacey L. ; Huebsch, Nathaniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-b333a5112703faa2bb7c6034168849469dbfe158ce3980a777bcc9c65fc95cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, Daniel W.</creatorcontrib><creatorcontrib>Malayath, Ganesh</creatorcontrib><creatorcontrib>Schuftan, David R.</creatorcontrib><creatorcontrib>Guo, Jingxuan</creatorcontrib><creatorcontrib>Oguntuyo, Kasoorelope</creatorcontrib><creatorcontrib>Ramahdita, Ghiska</creatorcontrib><creatorcontrib>Sun, Yuwen</creatorcontrib><creatorcontrib>Jordan, Samuel D.</creatorcontrib><creatorcontrib>Munsell, Mary K.</creatorcontrib><creatorcontrib>Kandalaft, Brennan</creatorcontrib><creatorcontrib>Pear, Missy</creatorcontrib><creatorcontrib>Rentschler, Stacey L.</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, Daniel W.</au><au>Malayath, Ganesh</au><au>Schuftan, David R.</au><au>Guo, Jingxuan</au><au>Oguntuyo, Kasoorelope</au><au>Ramahdita, Ghiska</au><au>Sun, Yuwen</au><au>Jordan, Samuel D.</au><au>Munsell, Mary K.</au><au>Kandalaft, Brennan</au><au>Pear, Missy</au><au>Rentschler, Stacey L.</au><au>Huebsch, Nathaniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes</atitle><jtitle>APL bioengineering</jtitle><addtitle>APL Bioeng</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>016118</spage><epage>016118-18</epage><pages>016118-016118-18</pages><issn>2473-2877</issn><eissn>2473-2877</eissn><coden>ABPID9</coden><abstract>Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing “in vivo like” physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2−/− tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>38476404</pmid><doi>10.1063/5.0160677</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3455-7512</orcidid><orcidid>https://orcid.org/0000-0002-3344-2839</orcidid><orcidid>https://orcid.org/0009-0009-0854-7979</orcidid><orcidid>https://orcid.org/0009-0007-2692-8746</orcidid><orcidid>https://orcid.org/0000-0002-8587-6954</orcidid><orcidid>https://orcid.org/0000-0003-4848-6786</orcidid><orcidid>https://orcid.org/0000-0002-3509-4962</orcidid><orcidid>https://orcid.org/0000-0002-1744-1238</orcidid><orcidid>https://orcid.org/0000-0003-4523-548X</orcidid><orcidid>https://orcid.org/0000-0002-3329-0214</orcidid><orcidid>https://orcid.org/0000-0001-8479-8096</orcidid><orcidid>https://orcid.org/0000-0002-2143-2991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2877 |
ispartof | APL bioengineering, 2024-03, Vol.8 (1), p.016118-016118-18 |
issn | 2473-2877 2473-2877 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10932571 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20tissue%20geometry%20and%20Plakophilin-2%20regulate%20electrophysiology%20of%20human%20iPSC-derived%20cardiomyocytes&rft.jtitle=APL%20bioengineering&rft.au=Simmons,%20Daniel%20W.&rft.date=2024-03-01&rft.volume=8&rft.issue=1&rft.spage=016118&rft.epage=016118-18&rft.pages=016118-016118-18&rft.issn=2473-2877&rft.eissn=2473-2877&rft.coden=ABPID9&rft_id=info:doi/10.1063/5.0160677&rft_dat=%3Cproquest_pubme%3E2956680473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956680473&rft_id=info:pmid/38476404&rft_doaj_id=oai_doaj_org_article_d89cbf04a3fd418da954adb7e76b6d32&rfr_iscdi=true |