Sec7 regulatory domains scaffold autoinhibited and active conformations
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-03, Vol.121 (10), p.e2318615121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e2318615121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Brownfield, Bryce A Richardson, Brian C Halaby, Steve L Fromme, J Christopher |
description | The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface. |
doi_str_mv | 10.1073/pnas.2318615121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10927569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933465878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ad297f90452829b5851dab2a246d67bb3f31fba9b7226c9eb2fbce58da19ba2d3</originalsourceid><addsrcrecordid>eNpdkc1LHjEQxkNpqW-1595koRcvq_nYfJ1ERG1B6EE9h0k20chu8jbZFfzvG_Gr7WEYhvnNw8w8CH0j-JBgyY62CeohZUQJwgklH9CGYE16MWj8EW0wprJXAx120Jda7zHGmiv8Ge0wNRAhFN-giyvvZFf87TrBkstjN-YZYqpddRBCnsYO1iXHdBdtXHyrUgu3xAffuZxCLjMsMae6hz4FmKr_-pJ30c352fXpj_7y18XP05PL3jEplh5GqmXQeOBUUW254mQES4EOYhTSWhYYCRa0lZQKp72lwTrP1QhEW6Aj20XHz7rb1c5-dD4tBSazLXGG8mgyRPNvJ8U7c5sfTPsLlVzopnDwolDy79XXxcyxOj9NkHxeq6GasUFwJVVDv_-H3ue1pHZfo_jQSEJko46eKVdyrcWHt20INk8umSeXzLtLbWL_7yPe-Fdb2B-IH4-1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954293117</pqid></control><display><type>article</type><title>Sec7 regulatory domains scaffold autoinhibited and active conformations</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brownfield, Bryce A ; Richardson, Brian C ; Halaby, Steve L ; Fromme, J Christopher</creator><creatorcontrib>Brownfield, Bryce A ; Richardson, Brian C ; Halaby, Steve L ; Fromme, J Christopher</creatorcontrib><description>The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2318615121</identifier><identifier>PMID: 38416685</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ADP-Ribosylation Factors - metabolism ; Biological Sciences ; Conformation ; Cryoforming ; Electron microscopy ; Golgi apparatus ; Golgi Apparatus - metabolism ; GTP Phosphohydrolases ; Guanine nucleotide exchange factor ; Localization ; Nucleotides ; Positive feedback</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (10), p.e2318615121</ispartof><rights>Copyright National Academy of Sciences Mar 5, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-ad297f90452829b5851dab2a246d67bb3f31fba9b7226c9eb2fbce58da19ba2d3</cites><orcidid>0000-0002-8837-0473 ; 0000-0002-5434-1500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927569/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927569/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38416685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brownfield, Bryce A</creatorcontrib><creatorcontrib>Richardson, Brian C</creatorcontrib><creatorcontrib>Halaby, Steve L</creatorcontrib><creatorcontrib>Fromme, J Christopher</creatorcontrib><title>Sec7 regulatory domains scaffold autoinhibited and active conformations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.</description><subject>ADP-Ribosylation Factors - metabolism</subject><subject>Biological Sciences</subject><subject>Conformation</subject><subject>Cryoforming</subject><subject>Electron microscopy</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>GTP Phosphohydrolases</subject><subject>Guanine nucleotide exchange factor</subject><subject>Localization</subject><subject>Nucleotides</subject><subject>Positive feedback</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LHjEQxkNpqW-1595koRcvq_nYfJ1ERG1B6EE9h0k20chu8jbZFfzvG_Gr7WEYhvnNw8w8CH0j-JBgyY62CeohZUQJwgklH9CGYE16MWj8EW0wprJXAx120Jda7zHGmiv8Ge0wNRAhFN-giyvvZFf87TrBkstjN-YZYqpddRBCnsYO1iXHdBdtXHyrUgu3xAffuZxCLjMsMae6hz4FmKr_-pJ30c352fXpj_7y18XP05PL3jEplh5GqmXQeOBUUW254mQES4EOYhTSWhYYCRa0lZQKp72lwTrP1QhEW6Aj20XHz7rb1c5-dD4tBSazLXGG8mgyRPNvJ8U7c5sfTPsLlVzopnDwolDy79XXxcyxOj9NkHxeq6GasUFwJVVDv_-H3ue1pHZfo_jQSEJko46eKVdyrcWHt20INk8umSeXzLtLbWL_7yPe-Fdb2B-IH4-1</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Brownfield, Bryce A</creator><creator>Richardson, Brian C</creator><creator>Halaby, Steve L</creator><creator>Fromme, J Christopher</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8837-0473</orcidid><orcidid>https://orcid.org/0000-0002-5434-1500</orcidid></search><sort><creationdate>20240305</creationdate><title>Sec7 regulatory domains scaffold autoinhibited and active conformations</title><author>Brownfield, Bryce A ; Richardson, Brian C ; Halaby, Steve L ; Fromme, J Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ad297f90452829b5851dab2a246d67bb3f31fba9b7226c9eb2fbce58da19ba2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ADP-Ribosylation Factors - metabolism</topic><topic>Biological Sciences</topic><topic>Conformation</topic><topic>Cryoforming</topic><topic>Electron microscopy</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>GTP Phosphohydrolases</topic><topic>Guanine nucleotide exchange factor</topic><topic>Localization</topic><topic>Nucleotides</topic><topic>Positive feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brownfield, Bryce A</creatorcontrib><creatorcontrib>Richardson, Brian C</creatorcontrib><creatorcontrib>Halaby, Steve L</creatorcontrib><creatorcontrib>Fromme, J Christopher</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brownfield, Bryce A</au><au>Richardson, Brian C</au><au>Halaby, Steve L</au><au>Fromme, J Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sec7 regulatory domains scaffold autoinhibited and active conformations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-03-05</date><risdate>2024</risdate><volume>121</volume><issue>10</issue><spage>e2318615121</spage><pages>e2318615121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38416685</pmid><doi>10.1073/pnas.2318615121</doi><orcidid>https://orcid.org/0000-0002-8837-0473</orcidid><orcidid>https://orcid.org/0000-0002-5434-1500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-03, Vol.121 (10), p.e2318615121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10927569 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ADP-Ribosylation Factors - metabolism Biological Sciences Conformation Cryoforming Electron microscopy Golgi apparatus Golgi Apparatus - metabolism GTP Phosphohydrolases Guanine nucleotide exchange factor Localization Nucleotides Positive feedback |
title | Sec7 regulatory domains scaffold autoinhibited and active conformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sec7%20regulatory%20domains%20scaffold%20autoinhibited%20and%20active%20conformations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brownfield,%20Bryce%20A&rft.date=2024-03-05&rft.volume=121&rft.issue=10&rft.spage=e2318615121&rft.pages=e2318615121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2318615121&rft_dat=%3Cproquest_pubme%3E2933465878%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954293117&rft_id=info:pmid/38416685&rfr_iscdi=true |