Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations

All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2024-03, Vol.128 (9), p.4111-4118
Hauptverfasser: Pols, Mike, van Duin, Adri C. T., Calero, Sofía, Tao, Shuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4118
container_issue 9
container_start_page 4111
container_title Journal of physical chemistry. C
container_volume 128
creator Pols, Mike
van Duin, Adri C. T.
Calero, Sofía
Tao, Shuxia
description All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb­(Br x I1–x )3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb­(Br x I1–x )3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb­(Br x I1–x )3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites.
doi_str_mv 10.1021/acs.jpcc.4c00563
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10926166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956680453</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-74d2377b851d40af23cf0beb49778d75f25ae5b1a503c6be927ef006abd18b393</originalsourceid><addsrcrecordid>eNp1kUtPGzEUhS1UBAG676rysosm-DG2Z7qp0vCKRETVx9ryeDzBdMYOtieCf49pQgQLVrauv3N87z0AfMJoghHBp0rHyd1K60mhEWKc7oERrigZi4KxD7t7IQ7BUYx3GaEI0wNwSMtC8JIUI2AX9sG6JZxD5Rr4I0Dr4Nz5sFTOavjTBL-O_2wy8RucJt_bmHJ57qJd3qYI2-B7-MsonezawIXvjB46FeDZo1O91RH-tn0uJOtdPAH7reqi-bg9j8Hfi_M_s6vx9c3lfDa9HitaipTbbQgVoi4ZbgqkWkJ1i2pTF5UQZSNYS5gyrMaKIap5bSoiTIsQV3WDy5pW9Bh83_iuhro3jTYuBdXJVbC9Co_SKyvfvjh7K5d-LTGqCMecZ4cvW4fg7wcTk8xza9N1yhk_REkqxnmJCkYzijaoDj7GYNrdPxjJ54hkjkg-RyS3EWXJ59f97QQvmWTg6wb4L_VDcHld7_s9AVZYn4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956680453</pqid></control><display><type>article</type><title>Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Pols, Mike ; van Duin, Adri C. T. ; Calero, Sofía ; Tao, Shuxia</creator><creatorcontrib>Pols, Mike ; van Duin, Adri C. T. ; Calero, Sofía ; Tao, Shuxia</creatorcontrib><description>All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb­(Br x I1–x )3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb­(Br x I1–x )3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb­(Br x I1–x )3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c00563</identifier><identifier>PMID: 38476824</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-03, Vol.128 (9), p.4111-4118</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-74d2377b851d40af23cf0beb49778d75f25ae5b1a503c6be927ef006abd18b393</cites><orcidid>0000-0002-3658-8497 ; 0000-0002-1068-9599 ; 0000-0002-3478-4945 ; 0000-0001-9535-057X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.4c00563$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.4c00563$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38476824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pols, Mike</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Calero, Sofía</creatorcontrib><creatorcontrib>Tao, Shuxia</creatorcontrib><title>Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb­(Br x I1–x )3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb­(Br x I1–x )3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb­(Br x I1–x )3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPGzEUhS1UBAG676rysosm-DG2Z7qp0vCKRETVx9ryeDzBdMYOtieCf49pQgQLVrauv3N87z0AfMJoghHBp0rHyd1K60mhEWKc7oERrigZi4KxD7t7IQ7BUYx3GaEI0wNwSMtC8JIUI2AX9sG6JZxD5Rr4I0Dr4Nz5sFTOavjTBL-O_2wy8RucJt_bmHJ57qJd3qYI2-B7-MsonezawIXvjB46FeDZo1O91RH-tn0uJOtdPAH7reqi-bg9j8Hfi_M_s6vx9c3lfDa9HitaipTbbQgVoi4ZbgqkWkJ1i2pTF5UQZSNYS5gyrMaKIap5bSoiTIsQV3WDy5pW9Bh83_iuhro3jTYuBdXJVbC9Co_SKyvfvjh7K5d-LTGqCMecZ4cvW4fg7wcTk8xza9N1yhk_REkqxnmJCkYzijaoDj7GYNrdPxjJ54hkjkg-RyS3EWXJ59f97QQvmWTg6wb4L_VDcHld7_s9AVZYn4g</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Pols, Mike</creator><creator>van Duin, Adri C. T.</creator><creator>Calero, Sofía</creator><creator>Tao, Shuxia</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3658-8497</orcidid><orcidid>https://orcid.org/0000-0002-1068-9599</orcidid><orcidid>https://orcid.org/0000-0002-3478-4945</orcidid><orcidid>https://orcid.org/0000-0001-9535-057X</orcidid></search><sort><creationdate>20240307</creationdate><title>Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations</title><author>Pols, Mike ; van Duin, Adri C. T. ; Calero, Sofía ; Tao, Shuxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-74d2377b851d40af23cf0beb49778d75f25ae5b1a503c6be927ef006abd18b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pols, Mike</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Calero, Sofía</creatorcontrib><creatorcontrib>Tao, Shuxia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pols, Mike</au><au>van Duin, Adri C. T.</au><au>Calero, Sofía</au><au>Tao, Shuxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>128</volume><issue>9</issue><spage>4111</spage><epage>4118</epage><pages>4111-4118</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb­(Br x I1–x )3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb­(Br x I1–x )3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb­(Br x I1–x )3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38476824</pmid><doi>10.1021/acs.jpcc.4c00563</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3658-8497</orcidid><orcidid>https://orcid.org/0000-0002-1068-9599</orcidid><orcidid>https://orcid.org/0000-0002-3478-4945</orcidid><orcidid>https://orcid.org/0000-0001-9535-057X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-03, Vol.128 (9), p.4111-4118
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10926166
source ACS Publications
subjects C: Physical Properties of Materials and Interfaces
title Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixing%20I%20and%20Br%20in%20Inorganic%20Perovskites:%20Atomistic%20Insights%20from%20Reactive%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pols,%20Mike&rft.date=2024-03-07&rft.volume=128&rft.issue=9&rft.spage=4111&rft.epage=4118&rft.pages=4111-4118&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c00563&rft_dat=%3Cproquest_pubme%3E2956680453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956680453&rft_id=info:pmid/38476824&rfr_iscdi=true