Convergence of coronary artery disease genes onto endothelial cell programs

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge 1 – 3 . For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway 1 – 6 . However, our know...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-02, Vol.626 (8000), p.799-807
Hauptverfasser: Schnitzler, Gavin R., Kang, Helen, Fang, Shi, Angom, Ramcharan S., Lee-Kim, Vivian S., Ma, X. Rosa, Zhou, Ronghao, Zeng, Tony, Guo, Katherine, Taylor, Martin S., Vellarikkal, Shamsudheen K., Barry, Aurelie E., Sias-Garcia, Oscar, Bloemendal, Alex, Munson, Glen, Guckelberger, Philine, Nguyen, Tung H., Bergman, Drew T., Hinshaw, Stephen, Cheng, Nathan, Cleary, Brian, Aragam, Krishna, Lander, Eric S., Finucane, Hilary K., Mukhopadhyay, Debabrata, Gupta, Rajat M., Engreitz, Jesse M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 8000
container_start_page 799
container_title Nature (London)
container_volume 626
creator Schnitzler, Gavin R.
Kang, Helen
Fang, Shi
Angom, Ramcharan S.
Lee-Kim, Vivian S.
Ma, X. Rosa
Zhou, Ronghao
Zeng, Tony
Guo, Katherine
Taylor, Martin S.
Vellarikkal, Shamsudheen K.
Barry, Aurelie E.
Sias-Garcia, Oscar
Bloemendal, Alex
Munson, Glen
Guckelberger, Philine
Nguyen, Tung H.
Bergman, Drew T.
Hinshaw, Stephen
Cheng, Nathan
Cleary, Brian
Aragam, Krishna
Lander, Eric S.
Finucane, Hilary K.
Mukhopadhyay, Debabrata
Gupta, Rajat M.
Engreitz, Jesse M.
description Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge 1 – 3 . For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway 1 – 6 . However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1 , are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases. Variant-to-gene-to-program is a new approach to building maps of genome function to link risk variants to disease genes and to convergent signalling pathways in an unbiased manner; its strength is demonstrated in coronary artery disease.
doi_str_mv 10.1038/s41586-024-07022-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10921916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923909353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-33e463c3d9e89440cb2b9486faf93d56b52d568a418cc2390dabcaa8a50e0c7b3</originalsourceid><addsrcrecordid>eNp9kT1P5DAQhi10CBaOP3DFKdI1NIHxRxy7QmjFl0Ci4WrLcSZLUNZe7OwK_j1eFriDgmammGfemVcvIb8oHFHg6jgJWilZAhMl1MBY-bRFJlTUshRS1T_IBICpEhSXu2QvpQcAqGgtdsguV5xJSasJuZ4Gv8I4Q--wCF3hQgzexufCxhFza_uENmGRAUxF8GMo0LdhvMeht0PhcBiKRQyzaOfpJ9nu7JDw4K3vk7_nZ3fTy_Lm9uJqenpTOlFXY8k5CskdbzUqLQS4hjVaKNnZTvO2kk3FclVWUOUc4xpa2zhrla0AwdUN3ycnG93Fsplj69CP0Q5mEft5_twE25vPE9_fm1lYGQqaUU1lVjh8U4jhcYlpNPM-rb1Yj2GZDNPru5pXPKN_vqAPYRl99pcpTqmUNROZYhvKxZBSxO7jGwpmHZbZhGVyWOY1LPOUl37_7-Nj5T2dDPANkPLIzzD-u_2N7Asp46GV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931166724</pqid></control><display><type>article</type><title>Convergence of coronary artery disease genes onto endothelial cell programs</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Schnitzler, Gavin R. ; Kang, Helen ; Fang, Shi ; Angom, Ramcharan S. ; Lee-Kim, Vivian S. ; Ma, X. Rosa ; Zhou, Ronghao ; Zeng, Tony ; Guo, Katherine ; Taylor, Martin S. ; Vellarikkal, Shamsudheen K. ; Barry, Aurelie E. ; Sias-Garcia, Oscar ; Bloemendal, Alex ; Munson, Glen ; Guckelberger, Philine ; Nguyen, Tung H. ; Bergman, Drew T. ; Hinshaw, Stephen ; Cheng, Nathan ; Cleary, Brian ; Aragam, Krishna ; Lander, Eric S. ; Finucane, Hilary K. ; Mukhopadhyay, Debabrata ; Gupta, Rajat M. ; Engreitz, Jesse M.</creator><creatorcontrib>Schnitzler, Gavin R. ; Kang, Helen ; Fang, Shi ; Angom, Ramcharan S. ; Lee-Kim, Vivian S. ; Ma, X. Rosa ; Zhou, Ronghao ; Zeng, Tony ; Guo, Katherine ; Taylor, Martin S. ; Vellarikkal, Shamsudheen K. ; Barry, Aurelie E. ; Sias-Garcia, Oscar ; Bloemendal, Alex ; Munson, Glen ; Guckelberger, Philine ; Nguyen, Tung H. ; Bergman, Drew T. ; Hinshaw, Stephen ; Cheng, Nathan ; Cleary, Brian ; Aragam, Krishna ; Lander, Eric S. ; Finucane, Hilary K. ; Mukhopadhyay, Debabrata ; Gupta, Rajat M. ; Engreitz, Jesse M.</creatorcontrib><description>Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge 1 – 3 . For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway 1 – 6 . However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1 , are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases. Variant-to-gene-to-program is a new approach to building maps of genome function to link risk variants to disease genes and to convergent signalling pathways in an unbiased manner; its strength is demonstrated in coronary artery disease.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07022-x</identifier><identifier>PMID: 38326615</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 38/15 ; 38/32 ; 38/39 ; 38/47 ; 38/91 ; 631/208/191 ; 631/208/200 ; 631/208/205 ; 631/80/304 ; 64/116 ; 692/699/75/593/15 ; 82/1 ; Cardiovascular disease ; Coronary artery disease ; Coronary Artery Disease - genetics ; Coronary Artery Disease - pathology ; Coronary vessels ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Enhancers ; Epigenomics ; Factorization ; Gene expression ; Genes ; Genetic Predisposition to Disease - genetics ; Genome-Wide Association Study ; Health risk assessment ; Heart diseases ; Hemangioma, Cavernous, Central Nervous System - genetics ; Hemangioma, Cavernous, Central Nervous System - pathology ; Heritability ; Humanities and Social Sciences ; Humans ; Linkage disequilibrium ; Lipids ; Mathematical analysis ; multidisciplinary ; Multifactorial Inheritance ; Polymorphism, Single Nucleotide ; Science ; Science (multidisciplinary) ; Signal transduction ; Signal Transduction - genetics ; Vein &amp; artery diseases</subject><ispartof>Nature (London), 2024-02, Vol.626 (8000), p.799-807</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Feb 22, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-33e463c3d9e89440cb2b9486faf93d56b52d568a418cc2390dabcaa8a50e0c7b3</citedby><cites>FETCH-LOGICAL-c475t-33e463c3d9e89440cb2b9486faf93d56b52d568a418cc2390dabcaa8a50e0c7b3</cites><orcidid>0000-0002-5894-1108 ; 0000-0003-1560-9276 ; 0000-0001-8297-4279 ; 0000-0003-1858-5054 ; 0000-0001-9865-4106 ; 0000-0002-8314-7088 ; 0000-0002-5754-1719 ; 0000-0001-9522-1911 ; 0000-0002-1057-2518 ; 0000-0003-0825-7129 ; 0000-0003-3864-9828 ; 0000-0003-3223-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07022-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07022-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38326615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnitzler, Gavin R.</creatorcontrib><creatorcontrib>Kang, Helen</creatorcontrib><creatorcontrib>Fang, Shi</creatorcontrib><creatorcontrib>Angom, Ramcharan S.</creatorcontrib><creatorcontrib>Lee-Kim, Vivian S.</creatorcontrib><creatorcontrib>Ma, X. Rosa</creatorcontrib><creatorcontrib>Zhou, Ronghao</creatorcontrib><creatorcontrib>Zeng, Tony</creatorcontrib><creatorcontrib>Guo, Katherine</creatorcontrib><creatorcontrib>Taylor, Martin S.</creatorcontrib><creatorcontrib>Vellarikkal, Shamsudheen K.</creatorcontrib><creatorcontrib>Barry, Aurelie E.</creatorcontrib><creatorcontrib>Sias-Garcia, Oscar</creatorcontrib><creatorcontrib>Bloemendal, Alex</creatorcontrib><creatorcontrib>Munson, Glen</creatorcontrib><creatorcontrib>Guckelberger, Philine</creatorcontrib><creatorcontrib>Nguyen, Tung H.</creatorcontrib><creatorcontrib>Bergman, Drew T.</creatorcontrib><creatorcontrib>Hinshaw, Stephen</creatorcontrib><creatorcontrib>Cheng, Nathan</creatorcontrib><creatorcontrib>Cleary, Brian</creatorcontrib><creatorcontrib>Aragam, Krishna</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><creatorcontrib>Finucane, Hilary K.</creatorcontrib><creatorcontrib>Mukhopadhyay, Debabrata</creatorcontrib><creatorcontrib>Gupta, Rajat M.</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><title>Convergence of coronary artery disease genes onto endothelial cell programs</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge 1 – 3 . For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway 1 – 6 . However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1 , are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases. Variant-to-gene-to-program is a new approach to building maps of genome function to link risk variants to disease genes and to convergent signalling pathways in an unbiased manner; its strength is demonstrated in coronary artery disease.</description><subject>14/19</subject><subject>38/15</subject><subject>38/32</subject><subject>38/39</subject><subject>38/47</subject><subject>38/91</subject><subject>631/208/191</subject><subject>631/208/200</subject><subject>631/208/205</subject><subject>631/80/304</subject><subject>64/116</subject><subject>692/699/75/593/15</subject><subject>82/1</subject><subject>Cardiovascular disease</subject><subject>Coronary artery disease</subject><subject>Coronary Artery Disease - genetics</subject><subject>Coronary Artery Disease - pathology</subject><subject>Coronary vessels</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Enhancers</subject><subject>Epigenomics</subject><subject>Factorization</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Health risk assessment</subject><subject>Heart diseases</subject><subject>Hemangioma, Cavernous, Central Nervous System - genetics</subject><subject>Hemangioma, Cavernous, Central Nervous System - pathology</subject><subject>Heritability</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Linkage disequilibrium</subject><subject>Lipids</subject><subject>Mathematical analysis</subject><subject>multidisciplinary</subject><subject>Multifactorial Inheritance</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Vein &amp; artery diseases</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1P5DAQhi10CBaOP3DFKdI1NIHxRxy7QmjFl0Ci4WrLcSZLUNZe7OwK_j1eFriDgmammGfemVcvIb8oHFHg6jgJWilZAhMl1MBY-bRFJlTUshRS1T_IBICpEhSXu2QvpQcAqGgtdsguV5xJSasJuZ4Gv8I4Q--wCF3hQgzexufCxhFza_uENmGRAUxF8GMo0LdhvMeht0PhcBiKRQyzaOfpJ9nu7JDw4K3vk7_nZ3fTy_Lm9uJqenpTOlFXY8k5CskdbzUqLQS4hjVaKNnZTvO2kk3FclVWUOUc4xpa2zhrla0AwdUN3ycnG93Fsplj69CP0Q5mEft5_twE25vPE9_fm1lYGQqaUU1lVjh8U4jhcYlpNPM-rb1Yj2GZDNPru5pXPKN_vqAPYRl99pcpTqmUNROZYhvKxZBSxO7jGwpmHZbZhGVyWOY1LPOUl37_7-Nj5T2dDPANkPLIzzD-u_2N7Asp46GV</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Schnitzler, Gavin R.</creator><creator>Kang, Helen</creator><creator>Fang, Shi</creator><creator>Angom, Ramcharan S.</creator><creator>Lee-Kim, Vivian S.</creator><creator>Ma, X. Rosa</creator><creator>Zhou, Ronghao</creator><creator>Zeng, Tony</creator><creator>Guo, Katherine</creator><creator>Taylor, Martin S.</creator><creator>Vellarikkal, Shamsudheen K.</creator><creator>Barry, Aurelie E.</creator><creator>Sias-Garcia, Oscar</creator><creator>Bloemendal, Alex</creator><creator>Munson, Glen</creator><creator>Guckelberger, Philine</creator><creator>Nguyen, Tung H.</creator><creator>Bergman, Drew T.</creator><creator>Hinshaw, Stephen</creator><creator>Cheng, Nathan</creator><creator>Cleary, Brian</creator><creator>Aragam, Krishna</creator><creator>Lander, Eric S.</creator><creator>Finucane, Hilary K.</creator><creator>Mukhopadhyay, Debabrata</creator><creator>Gupta, Rajat M.</creator><creator>Engreitz, Jesse M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5894-1108</orcidid><orcidid>https://orcid.org/0000-0003-1560-9276</orcidid><orcidid>https://orcid.org/0000-0001-8297-4279</orcidid><orcidid>https://orcid.org/0000-0003-1858-5054</orcidid><orcidid>https://orcid.org/0000-0001-9865-4106</orcidid><orcidid>https://orcid.org/0000-0002-8314-7088</orcidid><orcidid>https://orcid.org/0000-0002-5754-1719</orcidid><orcidid>https://orcid.org/0000-0001-9522-1911</orcidid><orcidid>https://orcid.org/0000-0002-1057-2518</orcidid><orcidid>https://orcid.org/0000-0003-0825-7129</orcidid><orcidid>https://orcid.org/0000-0003-3864-9828</orcidid><orcidid>https://orcid.org/0000-0003-3223-9131</orcidid></search><sort><creationdate>20240222</creationdate><title>Convergence of coronary artery disease genes onto endothelial cell programs</title><author>Schnitzler, Gavin R. ; Kang, Helen ; Fang, Shi ; Angom, Ramcharan S. ; Lee-Kim, Vivian S. ; Ma, X. Rosa ; Zhou, Ronghao ; Zeng, Tony ; Guo, Katherine ; Taylor, Martin S. ; Vellarikkal, Shamsudheen K. ; Barry, Aurelie E. ; Sias-Garcia, Oscar ; Bloemendal, Alex ; Munson, Glen ; Guckelberger, Philine ; Nguyen, Tung H. ; Bergman, Drew T. ; Hinshaw, Stephen ; Cheng, Nathan ; Cleary, Brian ; Aragam, Krishna ; Lander, Eric S. ; Finucane, Hilary K. ; Mukhopadhyay, Debabrata ; Gupta, Rajat M. ; Engreitz, Jesse M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-33e463c3d9e89440cb2b9486faf93d56b52d568a418cc2390dabcaa8a50e0c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/19</topic><topic>38/15</topic><topic>38/32</topic><topic>38/39</topic><topic>38/47</topic><topic>38/91</topic><topic>631/208/191</topic><topic>631/208/200</topic><topic>631/208/205</topic><topic>631/80/304</topic><topic>64/116</topic><topic>692/699/75/593/15</topic><topic>82/1</topic><topic>Cardiovascular disease</topic><topic>Coronary artery disease</topic><topic>Coronary Artery Disease - genetics</topic><topic>Coronary Artery Disease - pathology</topic><topic>Coronary vessels</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Enhancers</topic><topic>Epigenomics</topic><topic>Factorization</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Health risk assessment</topic><topic>Heart diseases</topic><topic>Hemangioma, Cavernous, Central Nervous System - genetics</topic><topic>Hemangioma, Cavernous, Central Nervous System - pathology</topic><topic>Heritability</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Linkage disequilibrium</topic><topic>Lipids</topic><topic>Mathematical analysis</topic><topic>multidisciplinary</topic><topic>Multifactorial Inheritance</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Vein &amp; artery diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnitzler, Gavin R.</creatorcontrib><creatorcontrib>Kang, Helen</creatorcontrib><creatorcontrib>Fang, Shi</creatorcontrib><creatorcontrib>Angom, Ramcharan S.</creatorcontrib><creatorcontrib>Lee-Kim, Vivian S.</creatorcontrib><creatorcontrib>Ma, X. Rosa</creatorcontrib><creatorcontrib>Zhou, Ronghao</creatorcontrib><creatorcontrib>Zeng, Tony</creatorcontrib><creatorcontrib>Guo, Katherine</creatorcontrib><creatorcontrib>Taylor, Martin S.</creatorcontrib><creatorcontrib>Vellarikkal, Shamsudheen K.</creatorcontrib><creatorcontrib>Barry, Aurelie E.</creatorcontrib><creatorcontrib>Sias-Garcia, Oscar</creatorcontrib><creatorcontrib>Bloemendal, Alex</creatorcontrib><creatorcontrib>Munson, Glen</creatorcontrib><creatorcontrib>Guckelberger, Philine</creatorcontrib><creatorcontrib>Nguyen, Tung H.</creatorcontrib><creatorcontrib>Bergman, Drew T.</creatorcontrib><creatorcontrib>Hinshaw, Stephen</creatorcontrib><creatorcontrib>Cheng, Nathan</creatorcontrib><creatorcontrib>Cleary, Brian</creatorcontrib><creatorcontrib>Aragam, Krishna</creatorcontrib><creatorcontrib>Lander, Eric S.</creatorcontrib><creatorcontrib>Finucane, Hilary K.</creatorcontrib><creatorcontrib>Mukhopadhyay, Debabrata</creatorcontrib><creatorcontrib>Gupta, Rajat M.</creatorcontrib><creatorcontrib>Engreitz, Jesse M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnitzler, Gavin R.</au><au>Kang, Helen</au><au>Fang, Shi</au><au>Angom, Ramcharan S.</au><au>Lee-Kim, Vivian S.</au><au>Ma, X. Rosa</au><au>Zhou, Ronghao</au><au>Zeng, Tony</au><au>Guo, Katherine</au><au>Taylor, Martin S.</au><au>Vellarikkal, Shamsudheen K.</au><au>Barry, Aurelie E.</au><au>Sias-Garcia, Oscar</au><au>Bloemendal, Alex</au><au>Munson, Glen</au><au>Guckelberger, Philine</au><au>Nguyen, Tung H.</au><au>Bergman, Drew T.</au><au>Hinshaw, Stephen</au><au>Cheng, Nathan</au><au>Cleary, Brian</au><au>Aragam, Krishna</au><au>Lander, Eric S.</au><au>Finucane, Hilary K.</au><au>Mukhopadhyay, Debabrata</au><au>Gupta, Rajat M.</au><au>Engreitz, Jesse M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of coronary artery disease genes onto endothelial cell programs</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>626</volume><issue>8000</issue><spage>799</spage><epage>807</epage><pages>799-807</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge 1 – 3 . For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway 1 – 6 . However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1 , are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases. Variant-to-gene-to-program is a new approach to building maps of genome function to link risk variants to disease genes and to convergent signalling pathways in an unbiased manner; its strength is demonstrated in coronary artery disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38326615</pmid><doi>10.1038/s41586-024-07022-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5894-1108</orcidid><orcidid>https://orcid.org/0000-0003-1560-9276</orcidid><orcidid>https://orcid.org/0000-0001-8297-4279</orcidid><orcidid>https://orcid.org/0000-0003-1858-5054</orcidid><orcidid>https://orcid.org/0000-0001-9865-4106</orcidid><orcidid>https://orcid.org/0000-0002-8314-7088</orcidid><orcidid>https://orcid.org/0000-0002-5754-1719</orcidid><orcidid>https://orcid.org/0000-0001-9522-1911</orcidid><orcidid>https://orcid.org/0000-0002-1057-2518</orcidid><orcidid>https://orcid.org/0000-0003-0825-7129</orcidid><orcidid>https://orcid.org/0000-0003-3864-9828</orcidid><orcidid>https://orcid.org/0000-0003-3223-9131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (8000), p.799-807
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10921916
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 14/19
38/15
38/32
38/39
38/47
38/91
631/208/191
631/208/200
631/208/205
631/80/304
64/116
692/699/75/593/15
82/1
Cardiovascular disease
Coronary artery disease
Coronary Artery Disease - genetics
Coronary Artery Disease - pathology
Coronary vessels
Endothelial cells
Endothelial Cells - metabolism
Endothelial Cells - pathology
Enhancers
Epigenomics
Factorization
Gene expression
Genes
Genetic Predisposition to Disease - genetics
Genome-Wide Association Study
Health risk assessment
Heart diseases
Hemangioma, Cavernous, Central Nervous System - genetics
Hemangioma, Cavernous, Central Nervous System - pathology
Heritability
Humanities and Social Sciences
Humans
Linkage disequilibrium
Lipids
Mathematical analysis
multidisciplinary
Multifactorial Inheritance
Polymorphism, Single Nucleotide
Science
Science (multidisciplinary)
Signal transduction
Signal Transduction - genetics
Vein & artery diseases
title Convergence of coronary artery disease genes onto endothelial cell programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20coronary%20artery%20disease%20genes%20onto%20endothelial%20cell%20programs&rft.jtitle=Nature%20(London)&rft.au=Schnitzler,%20Gavin%20R.&rft.date=2024-02-22&rft.volume=626&rft.issue=8000&rft.spage=799&rft.epage=807&rft.pages=799-807&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07022-x&rft_dat=%3Cproquest_pubme%3E2923909353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931166724&rft_id=info:pmid/38326615&rfr_iscdi=true