Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction
Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computa...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2023-10, Vol.39 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Bioinformatics (Oxford, England) |
container_volume | 39 |
creator | Gong, Haifan Zhang, Yumeng Dong, Chenhe Wang, Yue Chen, Guanqi Li, Haofeng Liu, Lanxuan Xu, Jie Li, Guanbin |
description | Abstract
Motivation
Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors.
Results
We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks.
Availability and implementation
All code and data is available at https://github.com/haifangong/UCL-GLGNN. |
doi_str_mv | 10.1093/bioinformatics/btad589 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad589</oup_id><sourcerecordid>2868118208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</originalsourceid><addsrcrecordid>eNqNkc1u3CAUhVHVqPnrK0Qsu3ECxjbMqqqitqkUqZtmjS74eoYWgws41bx9qGYaJbuuAJ1zP47uIeSKs2vONuLGuOjCFNMMxdl8YwqMvdq8IWdcDLLpFOdvX9xPyXnOPxljPeuHd-RUSNkxwdsz8vgQjIOMI7VrSs6ufp2pR0jBhS3FsINgq7j10YBvfLTg6TbBsqMB11QfAcufmH7RmoUuKRZ0gZYdpjmO-wCzszQXMM67sq86js4WF8MlOZnAZ3x_PC_Iw5fPP27vmvvvX7_dfrpvbNfL0kjg44hmw5jqO4GytaqXI-uUknzgSky9YcZOXLUI3CqUGzEoAx1OQiiQXFyQjwfuspoZR4uh1NB6SW6GtNcRnH6tBLfT2_io65K5kgOrhA9HQoq_V8xFzy5b9B4CxjXrVg11waplqlqHg9WmmHPC6fkfzv4ChX7dmj62VgevXqZ8HvtXUzXwgyGuy_9CnwCZFq-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868118208</pqid></control><display><type>article</type><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin</creator><contributor>Gao, Xin</contributor><creatorcontrib>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin ; Gao, Xin</creatorcontrib><description>Abstract
Motivation
Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors.
Results
We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks.
Availability and implementation
All code and data is available at https://github.com/haifangong/UCL-GLGNN.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad589</identifier><identifier>PMID: 37740312</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acids ; Curriculum ; Neural Networks, Computer ; Original Paper ; Protein Stability ; Thermodynamics</subject><ispartof>Bioinformatics (Oxford, England), 2023-10, Vol.39 (10)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</citedby><cites>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</cites><orcidid>0000-0002-1440-3340 ; 0000-0002-2749-6830 ; 0000-0002-2211-5138 ; 0000-0003-2486-6071 ; 0000-0002-6444-292X ; 0000-0001-9120-9843 ; 0000-0001-9233-4363 ; 0000-0002-4805-0926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37740312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gao, Xin</contributor><creatorcontrib>Gong, Haifan</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Dong, Chenhe</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Chen, Guanqi</creatorcontrib><creatorcontrib>Li, Haofeng</creatorcontrib><creatorcontrib>Liu, Lanxuan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors.
Results
We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks.
Availability and implementation
All code and data is available at https://github.com/haifangong/UCL-GLGNN.</description><subject>Amino Acids</subject><subject>Curriculum</subject><subject>Neural Networks, Computer</subject><subject>Original Paper</subject><subject>Protein Stability</subject><subject>Thermodynamics</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u3CAUhVHVqPnrK0Qsu3ECxjbMqqqitqkUqZtmjS74eoYWgws41bx9qGYaJbuuAJ1zP47uIeSKs2vONuLGuOjCFNMMxdl8YwqMvdq8IWdcDLLpFOdvX9xPyXnOPxljPeuHd-RUSNkxwdsz8vgQjIOMI7VrSs6ufp2pR0jBhS3FsINgq7j10YBvfLTg6TbBsqMB11QfAcufmH7RmoUuKRZ0gZYdpjmO-wCzszQXMM67sq86js4WF8MlOZnAZ3x_PC_Iw5fPP27vmvvvX7_dfrpvbNfL0kjg44hmw5jqO4GytaqXI-uUknzgSky9YcZOXLUI3CqUGzEoAx1OQiiQXFyQjwfuspoZR4uh1NB6SW6GtNcRnH6tBLfT2_io65K5kgOrhA9HQoq_V8xFzy5b9B4CxjXrVg11waplqlqHg9WmmHPC6fkfzv4ChX7dmj62VgevXqZ8HvtXUzXwgyGuy_9CnwCZFq-e</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Gong, Haifan</creator><creator>Zhang, Yumeng</creator><creator>Dong, Chenhe</creator><creator>Wang, Yue</creator><creator>Chen, Guanqi</creator><creator>Li, Haofeng</creator><creator>Liu, Lanxuan</creator><creator>Xu, Jie</creator><creator>Li, Guanbin</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1440-3340</orcidid><orcidid>https://orcid.org/0000-0002-2749-6830</orcidid><orcidid>https://orcid.org/0000-0002-2211-5138</orcidid><orcidid>https://orcid.org/0000-0003-2486-6071</orcidid><orcidid>https://orcid.org/0000-0002-6444-292X</orcidid><orcidid>https://orcid.org/0000-0001-9120-9843</orcidid><orcidid>https://orcid.org/0000-0001-9233-4363</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></search><sort><creationdate>20231003</creationdate><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><author>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acids</topic><topic>Curriculum</topic><topic>Neural Networks, Computer</topic><topic>Original Paper</topic><topic>Protein Stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Haifan</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Dong, Chenhe</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Chen, Guanqi</creatorcontrib><creatorcontrib>Li, Haofeng</creatorcontrib><creatorcontrib>Liu, Lanxuan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Haifan</au><au>Zhang, Yumeng</au><au>Dong, Chenhe</au><au>Wang, Yue</au><au>Chen, Guanqi</au><au>Li, Haofeng</au><au>Liu, Lanxuan</au><au>Xu, Jie</au><au>Li, Guanbin</au><au>Gao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors.
Results
We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks.
Availability and implementation
All code and data is available at https://github.com/haifangong/UCL-GLGNN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37740312</pmid><doi>10.1093/bioinformatics/btad589</doi><orcidid>https://orcid.org/0000-0002-1440-3340</orcidid><orcidid>https://orcid.org/0000-0002-2749-6830</orcidid><orcidid>https://orcid.org/0000-0002-2211-5138</orcidid><orcidid>https://orcid.org/0000-0003-2486-6071</orcidid><orcidid>https://orcid.org/0000-0002-6444-292X</orcidid><orcidid>https://orcid.org/0000-0001-9120-9843</orcidid><orcidid>https://orcid.org/0000-0001-9233-4363</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4811 |
ispartof | Bioinformatics (Oxford, England), 2023-10, Vol.39 (10) |
issn | 1367-4811 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918760 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acids Curriculum Neural Networks, Computer Original Paper Protein Stability Thermodynamics |
title | Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20curriculum%20learning%20enhanced%20global-local%20graph%20neural%20network%20for%20protein%20thermodynamic%20stability%20prediction&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Gong,%20Haifan&rft.date=2023-10-03&rft.volume=39&rft.issue=10&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad589&rft_dat=%3Cproquest_pubme%3E2868118208%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868118208&rft_id=info:pmid/37740312&rft_oup_id=10.1093/bioinformatics/btad589&rfr_iscdi=true |