Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction

Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-10, Vol.39 (10)
Hauptverfasser: Gong, Haifan, Zhang, Yumeng, Dong, Chenhe, Wang, Yue, Chen, Guanqi, Li, Haofeng, Liu, Lanxuan, Xu, Jie, Li, Guanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 39
creator Gong, Haifan
Zhang, Yumeng
Dong, Chenhe
Wang, Yue
Chen, Guanqi
Li, Haofeng
Liu, Lanxuan
Xu, Jie
Li, Guanbin
description Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. Results We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. Availability and implementation All code and data is available at https://github.com/haifangong/UCL-GLGNN.
doi_str_mv 10.1093/bioinformatics/btad589
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad589</oup_id><sourcerecordid>2868118208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</originalsourceid><addsrcrecordid>eNqNkc1u3CAUhVHVqPnrK0Qsu3ECxjbMqqqitqkUqZtmjS74eoYWgws41bx9qGYaJbuuAJ1zP47uIeSKs2vONuLGuOjCFNMMxdl8YwqMvdq8IWdcDLLpFOdvX9xPyXnOPxljPeuHd-RUSNkxwdsz8vgQjIOMI7VrSs6ufp2pR0jBhS3FsINgq7j10YBvfLTg6TbBsqMB11QfAcufmH7RmoUuKRZ0gZYdpjmO-wCzszQXMM67sq86js4WF8MlOZnAZ3x_PC_Iw5fPP27vmvvvX7_dfrpvbNfL0kjg44hmw5jqO4GytaqXI-uUknzgSky9YcZOXLUI3CqUGzEoAx1OQiiQXFyQjwfuspoZR4uh1NB6SW6GtNcRnH6tBLfT2_io65K5kgOrhA9HQoq_V8xFzy5b9B4CxjXrVg11waplqlqHg9WmmHPC6fkfzv4ChX7dmj62VgevXqZ8HvtXUzXwgyGuy_9CnwCZFq-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868118208</pqid></control><display><type>article</type><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin</creator><contributor>Gao, Xin</contributor><creatorcontrib>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin ; Gao, Xin</creatorcontrib><description>Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. Results We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. Availability and implementation All code and data is available at https://github.com/haifangong/UCL-GLGNN.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad589</identifier><identifier>PMID: 37740312</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acids ; Curriculum ; Neural Networks, Computer ; Original Paper ; Protein Stability ; Thermodynamics</subject><ispartof>Bioinformatics (Oxford, England), 2023-10, Vol.39 (10)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</citedby><cites>FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</cites><orcidid>0000-0002-1440-3340 ; 0000-0002-2749-6830 ; 0000-0002-2211-5138 ; 0000-0003-2486-6071 ; 0000-0002-6444-292X ; 0000-0001-9120-9843 ; 0000-0001-9233-4363 ; 0000-0002-4805-0926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37740312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gao, Xin</contributor><creatorcontrib>Gong, Haifan</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Dong, Chenhe</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Chen, Guanqi</creatorcontrib><creatorcontrib>Li, Haofeng</creatorcontrib><creatorcontrib>Liu, Lanxuan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. Results We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. Availability and implementation All code and data is available at https://github.com/haifangong/UCL-GLGNN.</description><subject>Amino Acids</subject><subject>Curriculum</subject><subject>Neural Networks, Computer</subject><subject>Original Paper</subject><subject>Protein Stability</subject><subject>Thermodynamics</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u3CAUhVHVqPnrK0Qsu3ECxjbMqqqitqkUqZtmjS74eoYWgws41bx9qGYaJbuuAJ1zP47uIeSKs2vONuLGuOjCFNMMxdl8YwqMvdq8IWdcDLLpFOdvX9xPyXnOPxljPeuHd-RUSNkxwdsz8vgQjIOMI7VrSs6ufp2pR0jBhS3FsINgq7j10YBvfLTg6TbBsqMB11QfAcufmH7RmoUuKRZ0gZYdpjmO-wCzszQXMM67sq86js4WF8MlOZnAZ3x_PC_Iw5fPP27vmvvvX7_dfrpvbNfL0kjg44hmw5jqO4GytaqXI-uUknzgSky9YcZOXLUI3CqUGzEoAx1OQiiQXFyQjwfuspoZR4uh1NB6SW6GtNcRnH6tBLfT2_io65K5kgOrhA9HQoq_V8xFzy5b9B4CxjXrVg11waplqlqHg9WmmHPC6fkfzv4ChX7dmj62VgevXqZ8HvtXUzXwgyGuy_9CnwCZFq-e</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Gong, Haifan</creator><creator>Zhang, Yumeng</creator><creator>Dong, Chenhe</creator><creator>Wang, Yue</creator><creator>Chen, Guanqi</creator><creator>Li, Haofeng</creator><creator>Liu, Lanxuan</creator><creator>Xu, Jie</creator><creator>Li, Guanbin</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1440-3340</orcidid><orcidid>https://orcid.org/0000-0002-2749-6830</orcidid><orcidid>https://orcid.org/0000-0002-2211-5138</orcidid><orcidid>https://orcid.org/0000-0003-2486-6071</orcidid><orcidid>https://orcid.org/0000-0002-6444-292X</orcidid><orcidid>https://orcid.org/0000-0001-9120-9843</orcidid><orcidid>https://orcid.org/0000-0001-9233-4363</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid></search><sort><creationdate>20231003</creationdate><title>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</title><author>Gong, Haifan ; Zhang, Yumeng ; Dong, Chenhe ; Wang, Yue ; Chen, Guanqi ; Li, Haofeng ; Liu, Lanxuan ; Xu, Jie ; Li, Guanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-7a1ddeb9008543e72c857d0488716183f5b0bcf182ea1c8e79368ba4ef338a713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acids</topic><topic>Curriculum</topic><topic>Neural Networks, Computer</topic><topic>Original Paper</topic><topic>Protein Stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Haifan</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Dong, Chenhe</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Chen, Guanqi</creatorcontrib><creatorcontrib>Li, Haofeng</creatorcontrib><creatorcontrib>Liu, Lanxuan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Haifan</au><au>Zhang, Yumeng</au><au>Dong, Chenhe</au><au>Wang, Yue</au><au>Chen, Guanqi</au><au>Li, Haofeng</au><au>Liu, Lanxuan</au><au>Xu, Jie</au><au>Li, Guanbin</au><au>Gao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>39</volume><issue>10</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. Results We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. Availability and implementation All code and data is available at https://github.com/haifangong/UCL-GLGNN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37740312</pmid><doi>10.1093/bioinformatics/btad589</doi><orcidid>https://orcid.org/0000-0002-1440-3340</orcidid><orcidid>https://orcid.org/0000-0002-2749-6830</orcidid><orcidid>https://orcid.org/0000-0002-2211-5138</orcidid><orcidid>https://orcid.org/0000-0003-2486-6071</orcidid><orcidid>https://orcid.org/0000-0002-6444-292X</orcidid><orcidid>https://orcid.org/0000-0001-9120-9843</orcidid><orcidid>https://orcid.org/0000-0001-9233-4363</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2023-10, Vol.39 (10)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918760
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acids
Curriculum
Neural Networks, Computer
Original Paper
Protein Stability
Thermodynamics
title Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20curriculum%20learning%20enhanced%20global-local%20graph%20neural%20network%20for%20protein%20thermodynamic%20stability%20prediction&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Gong,%20Haifan&rft.date=2023-10-03&rft.volume=39&rft.issue=10&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad589&rft_dat=%3Cproquest_pubme%3E2868118208%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868118208&rft_id=info:pmid/37740312&rft_oup_id=10.1093/bioinformatics/btad589&rfr_iscdi=true