Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics

Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-03, Vol.10 (10), p.eadk2298-eadk2298
Hauptverfasser: This, Sébastien, Costantino, Santiago, Melichar, Heather J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadk2298
container_issue 10
container_start_page eadk2298
container_title Science advances
container_volume 10
creator This, Sébastien
Costantino, Santiago
Melichar, Heather J
description Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8 T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.
doi_str_mv 10.1126/sciadv.adk2298
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10917351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2942187814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-8f0da6faaf576576e9706f9c9f8845135585a2811787999d295c9e03fd3bd0f93</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaJYqb16lBy9tOZjs5ucRMQvqHipV8M0H210N1uT3UL_vS2tojAwA_PmvTc8hC4omVDKyutsAtj1BOwnY0oeoTPGKzFmopDHf-YBGuX8QQihRVkKqk7RgMuiKKUUZ-j9BcwyRIdrBymGuMCr5GwwXWhjxq3HM2xcXWOIXVi4iPPKmeCDCd0G-9Q2OMQuwQ7S15CwgdqEvsF2E6EJJp-jEw91dqNDH6K3h_vZ3dN4-vr4fHc7HRtelN1YemKh9ABeVOW2nKpI6ZVRXspCUC6EFMAkpZWslFKWKWGUI9xbPrfEKz5EN3veVT9vnDVu56rWqxQaSBvdQtD_NzEs9aJda0oUrfhWYoiuDgyp_epd7nQT8u4viK7ts2aqYFRWkhZb6GQPNanNOTn_q0OJ3gWj98HoQzDbg8u_7n7hPzHwbxMsjX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942187814</pqid></control><display><type>article</type><title>Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>This, Sébastien ; Costantino, Santiago ; Melichar, Heather J</creator><creatorcontrib>This, Sébastien ; Costantino, Santiago ; Melichar, Heather J</creatorcontrib><description>Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8 T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adk2298</identifier><identifier>PMID: 38446885</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Computer Science ; Immunology ; SciAdv r-articles</subject><ispartof>Science advances, 2024-03, Vol.10 (10), p.eadk2298-eadk2298</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-8f0da6faaf576576e9706f9c9f8845135585a2811787999d295c9e03fd3bd0f93</cites><orcidid>0000-0002-2454-2635 ; 0000-0003-0951-334X ; 0000-0003-2931-9050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917351/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917351/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38446885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>This, Sébastien</creatorcontrib><creatorcontrib>Costantino, Santiago</creatorcontrib><creatorcontrib>Melichar, Heather J</creatorcontrib><title>Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8 T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.</description><subject>Biomedicine and Life Sciences</subject><subject>Computer Science</subject><subject>Immunology</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaJYqb16lBy9tOZjs5ucRMQvqHipV8M0H210N1uT3UL_vS2tojAwA_PmvTc8hC4omVDKyutsAtj1BOwnY0oeoTPGKzFmopDHf-YBGuX8QQihRVkKqk7RgMuiKKUUZ-j9BcwyRIdrBymGuMCr5GwwXWhjxq3HM2xcXWOIXVi4iPPKmeCDCd0G-9Q2OMQuwQ7S15CwgdqEvsF2E6EJJp-jEw91dqNDH6K3h_vZ3dN4-vr4fHc7HRtelN1YemKh9ABeVOW2nKpI6ZVRXspCUC6EFMAkpZWslFKWKWGUI9xbPrfEKz5EN3veVT9vnDVu56rWqxQaSBvdQtD_NzEs9aJda0oUrfhWYoiuDgyp_epd7nQT8u4viK7ts2aqYFRWkhZb6GQPNanNOTn_q0OJ3gWj98HoQzDbg8u_7n7hPzHwbxMsjX4</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>This, Sébastien</creator><creator>Costantino, Santiago</creator><creator>Melichar, Heather J</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2454-2635</orcidid><orcidid>https://orcid.org/0000-0003-0951-334X</orcidid><orcidid>https://orcid.org/0000-0003-2931-9050</orcidid></search><sort><creationdate>20240308</creationdate><title>Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics</title><author>This, Sébastien ; Costantino, Santiago ; Melichar, Heather J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-8f0da6faaf576576e9706f9c9f8845135585a2811787999d295c9e03fd3bd0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Computer Science</topic><topic>Immunology</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>This, Sébastien</creatorcontrib><creatorcontrib>Costantino, Santiago</creatorcontrib><creatorcontrib>Melichar, Heather J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>This, Sébastien</au><au>Costantino, Santiago</au><au>Melichar, Heather J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>eadk2298</spage><epage>eadk2298</epage><pages>eadk2298-eadk2298</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8 T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38446885</pmid><doi>10.1126/sciadv.adk2298</doi><orcidid>https://orcid.org/0000-0002-2454-2635</orcidid><orcidid>https://orcid.org/0000-0003-0951-334X</orcidid><orcidid>https://orcid.org/0000-0003-2931-9050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-03, Vol.10 (10), p.eadk2298-eadk2298
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10917351
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biomedicine and Life Sciences
Computer Science
Immunology
SciAdv r-articles
title Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20predictions%20of%20T%20cell%20antigen%20specificity%20from%20intracellular%20calcium%20dynamics&rft.jtitle=Science%20advances&rft.au=This,%20S%C3%A9bastien&rft.date=2024-03-08&rft.volume=10&rft.issue=10&rft.spage=eadk2298&rft.epage=eadk2298&rft.pages=eadk2298-eadk2298&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adk2298&rft_dat=%3Cproquest_pubme%3E2942187814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942187814&rft_id=info:pmid/38446885&rfr_iscdi=true