3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation

Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-02, Vol.14 (11), p.777-7778
Hauptverfasser: Britel, Adam, Tomagra, Giulia, Aprà, Pietro, Varzi, Veronica, Sturari, Sofia, Amine, Nour-Hanne, Olivero, Paolo, Picollo, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7778
container_issue 11
container_start_page 777
container_title RSC advances
container_volume 14
creator Britel, Adam
Tomagra, Giulia
Aprà, Pietro
Varzi, Veronica
Sturari, Sofia
Amine, Nour-Hanne
Olivero, Paolo
Picollo, Federico
description Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation. Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.
doi_str_mv 10.1039/d4ra00752b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938283072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEolXphj3IEhtUdahfcWI2qA9eUqVKFawtx76ecZXYwU4K7a_gJ-N2hqHUG1s63z2-18dV9ZLgdwQzeWR50hg3Ne2eVLsUc7GgWMinD8471X7OV7gsURMqyPNqh7Wcc9nw3eo3O0Nj8mHyYYl8QIM3Kbp-9tab_B7BrxGSHyBMukdxnPzgb_XkY0DRIZvi2MOEsr8FpINFSwiQ1nIhAU2rFOflCrk-_kQumjmXWw7RuNIZDjcVcYAp3aBrnfx95YvqmdN9hv3Nvld9__Tx2-mXxfnF56-nx-cLw9p2WlDBWy2phEY3wjgtsWadbZgFaA011lnQ3BAhbV0bSlwHspOSEc5A4LYjbK_6sPYd524Aa8qISfeqvMWg042K2qv_leBXahmvFcGSME5YcXi7cUjxxwx5UoPPBvpeB4hzVlSylrYMN7Sgbx6hV3FOocxXqFrgphX4zvBgTZUIck7gtt0QrO7CVmf88vg-7JMCv37Y_xb9G20BXq2BlM1W_fdb2B9Sk7KN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956078603</pqid></control><display><type>article</type><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</creator><creatorcontrib>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</creatorcontrib><description>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation. Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra00752b</identifier><identifier>PMID: 38444974</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Biological effects ; Chemistry ; Dispersion ; Droplets ; Flow velocity ; Lithography ; Low flow ; Microfluidics ; Orifices ; Parameters ; Phases ; System effectiveness ; Three dimensional printing ; Viscosity</subject><ispartof>RSC advances, 2024-02, Vol.14 (11), p.777-7778</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</cites><orcidid>0000-0003-3179-271X ; 0000-0002-0582-4784 ; 0000-0002-0973-3775 ; 0000-0002-7512-6295 ; 0000-0001-7609-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38444974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Britel, Adam</creatorcontrib><creatorcontrib>Tomagra, Giulia</creatorcontrib><creatorcontrib>Aprà, Pietro</creatorcontrib><creatorcontrib>Varzi, Veronica</creatorcontrib><creatorcontrib>Sturari, Sofia</creatorcontrib><creatorcontrib>Amine, Nour-Hanne</creatorcontrib><creatorcontrib>Olivero, Paolo</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation. Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</description><subject>3-D printers</subject><subject>Biological effects</subject><subject>Chemistry</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Flow velocity</subject><subject>Lithography</subject><subject>Low flow</subject><subject>Microfluidics</subject><subject>Orifices</subject><subject>Parameters</subject><subject>Phases</subject><subject>System effectiveness</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEolXphj3IEhtUdahfcWI2qA9eUqVKFawtx76ecZXYwU4K7a_gJ-N2hqHUG1s63z2-18dV9ZLgdwQzeWR50hg3Ne2eVLsUc7GgWMinD8471X7OV7gsURMqyPNqh7Wcc9nw3eo3O0Nj8mHyYYl8QIM3Kbp-9tab_B7BrxGSHyBMukdxnPzgb_XkY0DRIZvi2MOEsr8FpINFSwiQ1nIhAU2rFOflCrk-_kQumjmXWw7RuNIZDjcVcYAp3aBrnfx95YvqmdN9hv3Nvld9__Tx2-mXxfnF56-nx-cLw9p2WlDBWy2phEY3wjgtsWadbZgFaA011lnQ3BAhbV0bSlwHspOSEc5A4LYjbK_6sPYd524Aa8qISfeqvMWg042K2qv_leBXahmvFcGSME5YcXi7cUjxxwx5UoPPBvpeB4hzVlSylrYMN7Sgbx6hV3FOocxXqFrgphX4zvBgTZUIck7gtt0QrO7CVmf88vg-7JMCv37Y_xb9G20BXq2BlM1W_fdb2B9Sk7KN</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Britel, Adam</creator><creator>Tomagra, Giulia</creator><creator>Aprà, Pietro</creator><creator>Varzi, Veronica</creator><creator>Sturari, Sofia</creator><creator>Amine, Nour-Hanne</creator><creator>Olivero, Paolo</creator><creator>Picollo, Federico</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0002-0582-4784</orcidid><orcidid>https://orcid.org/0000-0002-0973-3775</orcidid><orcidid>https://orcid.org/0000-0002-7512-6295</orcidid><orcidid>https://orcid.org/0000-0001-7609-1576</orcidid></search><sort><creationdate>20240229</creationdate><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><author>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Biological effects</topic><topic>Chemistry</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Flow velocity</topic><topic>Lithography</topic><topic>Low flow</topic><topic>Microfluidics</topic><topic>Orifices</topic><topic>Parameters</topic><topic>Phases</topic><topic>System effectiveness</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Britel, Adam</creatorcontrib><creatorcontrib>Tomagra, Giulia</creatorcontrib><creatorcontrib>Aprà, Pietro</creatorcontrib><creatorcontrib>Varzi, Veronica</creatorcontrib><creatorcontrib>Sturari, Sofia</creatorcontrib><creatorcontrib>Amine, Nour-Hanne</creatorcontrib><creatorcontrib>Olivero, Paolo</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Britel, Adam</au><au>Tomagra, Giulia</au><au>Aprà, Pietro</au><au>Varzi, Veronica</au><au>Sturari, Sofia</au><au>Amine, Nour-Hanne</au><au>Olivero, Paolo</au><au>Picollo, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>777</spage><epage>7778</epage><pages>777-7778</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation. Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38444974</pmid><doi>10.1039/d4ra00752b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0002-0582-4784</orcidid><orcidid>https://orcid.org/0000-0002-0973-3775</orcidid><orcidid>https://orcid.org/0000-0002-7512-6295</orcidid><orcidid>https://orcid.org/0000-0001-7609-1576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-02, Vol.14 (11), p.777-7778
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913413
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3-D printers
Biological effects
Chemistry
Dispersion
Droplets
Flow velocity
Lithography
Low flow
Microfluidics
Orifices
Parameters
Phases
System effectiveness
Three dimensional printing
Viscosity
title 3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20in%20microfluidics:%20experimental%20optimization%20of%20droplet%20size%20and%20generation%20time%20through%20flow%20focusing,%20phase,%20and%20geometry%20variation&rft.jtitle=RSC%20advances&rft.au=Britel,%20Adam&rft.date=2024-02-29&rft.volume=14&rft.issue=11&rft.spage=777&rft.epage=7778&rft.pages=777-7778&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra00752b&rft_dat=%3Cproquest_pubme%3E2938283072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956078603&rft_id=info:pmid/38444974&rfr_iscdi=true