3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation
Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-02, Vol.14 (11), p.777-7778 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7778 |
---|---|
container_issue | 11 |
container_start_page | 777 |
container_title | RSC advances |
container_volume | 14 |
creator | Britel, Adam Tomagra, Giulia Aprà, Pietro Varzi, Veronica Sturari, Sofia Amine, Nour-Hanne Olivero, Paolo Picollo, Federico |
description | Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation.
Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer. |
doi_str_mv | 10.1039/d4ra00752b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938283072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEolXphj3IEhtUdahfcWI2qA9eUqVKFawtx76ecZXYwU4K7a_gJ-N2hqHUG1s63z2-18dV9ZLgdwQzeWR50hg3Ne2eVLsUc7GgWMinD8471X7OV7gsURMqyPNqh7Wcc9nw3eo3O0Nj8mHyYYl8QIM3Kbp-9tab_B7BrxGSHyBMukdxnPzgb_XkY0DRIZvi2MOEsr8FpINFSwiQ1nIhAU2rFOflCrk-_kQumjmXWw7RuNIZDjcVcYAp3aBrnfx95YvqmdN9hv3Nvld9__Tx2-mXxfnF56-nx-cLw9p2WlDBWy2phEY3wjgtsWadbZgFaA011lnQ3BAhbV0bSlwHspOSEc5A4LYjbK_6sPYd524Aa8qISfeqvMWg042K2qv_leBXahmvFcGSME5YcXi7cUjxxwx5UoPPBvpeB4hzVlSylrYMN7Sgbx6hV3FOocxXqFrgphX4zvBgTZUIck7gtt0QrO7CVmf88vg-7JMCv37Y_xb9G20BXq2BlM1W_fdb2B9Sk7KN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956078603</pqid></control><display><type>article</type><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</creator><creatorcontrib>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</creatorcontrib><description>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation.
Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra00752b</identifier><identifier>PMID: 38444974</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Biological effects ; Chemistry ; Dispersion ; Droplets ; Flow velocity ; Lithography ; Low flow ; Microfluidics ; Orifices ; Parameters ; Phases ; System effectiveness ; Three dimensional printing ; Viscosity</subject><ispartof>RSC advances, 2024-02, Vol.14 (11), p.777-7778</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</cites><orcidid>0000-0003-3179-271X ; 0000-0002-0582-4784 ; 0000-0002-0973-3775 ; 0000-0002-7512-6295 ; 0000-0001-7609-1576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38444974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Britel, Adam</creatorcontrib><creatorcontrib>Tomagra, Giulia</creatorcontrib><creatorcontrib>Aprà, Pietro</creatorcontrib><creatorcontrib>Varzi, Veronica</creatorcontrib><creatorcontrib>Sturari, Sofia</creatorcontrib><creatorcontrib>Amine, Nour-Hanne</creatorcontrib><creatorcontrib>Olivero, Paolo</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation.
Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</description><subject>3-D printers</subject><subject>Biological effects</subject><subject>Chemistry</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Flow velocity</subject><subject>Lithography</subject><subject>Low flow</subject><subject>Microfluidics</subject><subject>Orifices</subject><subject>Parameters</subject><subject>Phases</subject><subject>System effectiveness</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEolXphj3IEhtUdahfcWI2qA9eUqVKFawtx76ecZXYwU4K7a_gJ-N2hqHUG1s63z2-18dV9ZLgdwQzeWR50hg3Ne2eVLsUc7GgWMinD8471X7OV7gsURMqyPNqh7Wcc9nw3eo3O0Nj8mHyYYl8QIM3Kbp-9tab_B7BrxGSHyBMukdxnPzgb_XkY0DRIZvi2MOEsr8FpINFSwiQ1nIhAU2rFOflCrk-_kQumjmXWw7RuNIZDjcVcYAp3aBrnfx95YvqmdN9hv3Nvld9__Tx2-mXxfnF56-nx-cLw9p2WlDBWy2phEY3wjgtsWadbZgFaA011lnQ3BAhbV0bSlwHspOSEc5A4LYjbK_6sPYd524Aa8qISfeqvMWg042K2qv_leBXahmvFcGSME5YcXi7cUjxxwx5UoPPBvpeB4hzVlSylrYMN7Sgbx6hV3FOocxXqFrgphX4zvBgTZUIck7gtt0QrO7CVmf88vg-7JMCv37Y_xb9G20BXq2BlM1W_fdb2B9Sk7KN</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Britel, Adam</creator><creator>Tomagra, Giulia</creator><creator>Aprà, Pietro</creator><creator>Varzi, Veronica</creator><creator>Sturari, Sofia</creator><creator>Amine, Nour-Hanne</creator><creator>Olivero, Paolo</creator><creator>Picollo, Federico</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0002-0582-4784</orcidid><orcidid>https://orcid.org/0000-0002-0973-3775</orcidid><orcidid>https://orcid.org/0000-0002-7512-6295</orcidid><orcidid>https://orcid.org/0000-0001-7609-1576</orcidid></search><sort><creationdate>20240229</creationdate><title>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</title><author>Britel, Adam ; Tomagra, Giulia ; Aprà, Pietro ; Varzi, Veronica ; Sturari, Sofia ; Amine, Nour-Hanne ; Olivero, Paolo ; Picollo, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2648a929e7a76cfa90a3bd73dee8c2cdfdea4c169d55c21fbe9b993143e608b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Biological effects</topic><topic>Chemistry</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Flow velocity</topic><topic>Lithography</topic><topic>Low flow</topic><topic>Microfluidics</topic><topic>Orifices</topic><topic>Parameters</topic><topic>Phases</topic><topic>System effectiveness</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Britel, Adam</creatorcontrib><creatorcontrib>Tomagra, Giulia</creatorcontrib><creatorcontrib>Aprà, Pietro</creatorcontrib><creatorcontrib>Varzi, Veronica</creatorcontrib><creatorcontrib>Sturari, Sofia</creatorcontrib><creatorcontrib>Amine, Nour-Hanne</creatorcontrib><creatorcontrib>Olivero, Paolo</creatorcontrib><creatorcontrib>Picollo, Federico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Britel, Adam</au><au>Tomagra, Giulia</au><au>Aprà, Pietro</au><au>Varzi, Veronica</au><au>Sturari, Sofia</au><au>Amine, Nour-Hanne</au><au>Olivero, Paolo</au><au>Picollo, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>777</spage><epage>7778</epage><pages>777-7778</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation.
Optimizing droplet size and timing in microfluidics using phase, and geometrical adjustments using desktop 3D printer.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38444974</pmid><doi>10.1039/d4ra00752b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3179-271X</orcidid><orcidid>https://orcid.org/0000-0002-0582-4784</orcidid><orcidid>https://orcid.org/0000-0002-0973-3775</orcidid><orcidid>https://orcid.org/0000-0002-7512-6295</orcidid><orcidid>https://orcid.org/0000-0001-7609-1576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-02, Vol.14 (11), p.777-7778 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913413 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-D printers Biological effects Chemistry Dispersion Droplets Flow velocity Lithography Low flow Microfluidics Orifices Parameters Phases System effectiveness Three dimensional printing Viscosity |
title | 3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20in%20microfluidics:%20experimental%20optimization%20of%20droplet%20size%20and%20generation%20time%20through%20flow%20focusing,%20phase,%20and%20geometry%20variation&rft.jtitle=RSC%20advances&rft.au=Britel,%20Adam&rft.date=2024-02-29&rft.volume=14&rft.issue=11&rft.spage=777&rft.epage=7778&rft.pages=777-7778&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra00752b&rft_dat=%3Cproquest_pubme%3E2938283072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956078603&rft_id=info:pmid/38444974&rfr_iscdi=true |