Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (9), p.e2315985121
Hauptverfasser: Zimmermann, Cosima, Watson, Gabrielle M, Bauersfeld, Liane, Berry, Richard, Ciblis, Barbara, Lan, Huan, Gerke, Carolin, Oberhardt, Valerie, Fuchs, Jonas, Hofmann, Maike, Freund, Christian, Rossjohn, Jamie, Momburg, Frank, Hengel, Hartmut, Halenius, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e2315985121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Zimmermann, Cosima
Watson, Gabrielle M
Bauersfeld, Liane
Berry, Richard
Ciblis, Barbara
Lan, Huan
Gerke, Carolin
Oberhardt, Valerie
Fuchs, Jonas
Hofmann, Maike
Freund, Christian
Rossjohn, Jamie
Momburg, Frank
Hengel, Hartmut
Halenius, Anne
description Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.
doi_str_mv 10.1073/pnas.2315985121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10907249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933529978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2Kqmxpz9yQJS5cAv5I4vhUoaUtlah6aDlbE2d2MUrsre1E4sLfXiMo0J488vzm6c08Qg45O-VMybOdh3QqJG9013DB35AVZ5pXba3ZHlkxJlTV1aLeJ-9TumWM6aZj78i-7KRSXIsVub9wC8aE1N7lMOEWxrC4OCd6_ZNzCj7DNniXplIO9PvlujqnuEBywdOUI2TcOkw04oIwUqDZ5WoTYpUhUxtwCeOcCwvxjkKcCggWqfP0JkzOuyF9IG83MCb8-PQekOsvn3-tL6urH1-_rc-vKlsLkSsLAxdDq_ta2m7gIITu2dC2qGT57FjbytLqUTLdWmyYVqrtBeqNBSV4p-QB-fSou5v7CQeLvpgfzS66qXgzAZz5t-PdjdmGxZRzMiVqXRROnhRi-D1jymZyyeI4gscwJyO00E3NRVMX9Pg_9DbM0Zf9CiVlI7RWXaHOHikbQ0oRN89uODMP4ZqHcM1LuGXi6PUSz_zfNOUf8WCiNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933529978</pqid></control><display><type>article</type><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</creator><creatorcontrib>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</creatorcontrib><description>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2315985121</identifier><identifier>PMID: 38377192</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; CD8 antigen ; Cell activation ; Cell Line ; Coevolution ; Complexity ; Cytomegalovirus ; Glycoproteins ; Grooves ; Histocompatibility antigen HLA ; Histocompatibility Antigens - metabolism ; Histocompatibility Antigens Class I ; HLA-A Antigens - metabolism ; Hominidae - genetics ; Hominidae - metabolism ; Humans ; Immunology ; Lymphocytes T ; Major histocompatibility complex ; Peptides ; Peptides - metabolism ; Tat protein ; Viral Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (9), p.e2315985121</ispartof><rights>Copyright National Academy of Sciences Feb 27, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</citedby><cites>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</cites><orcidid>0000-0001-8410-8833 ; 0000-0001-6335-1017 ; 0000-0003-2956-1410 ; 0009-0004-4790-2498 ; 0000-0002-3482-816X ; 0000-0003-1974-212X ; 0000-0002-2020-7522 ; 0000-0001-7043-0469 ; 0000-0001-7416-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38377192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, Cosima</creatorcontrib><creatorcontrib>Watson, Gabrielle M</creatorcontrib><creatorcontrib>Bauersfeld, Liane</creatorcontrib><creatorcontrib>Berry, Richard</creatorcontrib><creatorcontrib>Ciblis, Barbara</creatorcontrib><creatorcontrib>Lan, Huan</creatorcontrib><creatorcontrib>Gerke, Carolin</creatorcontrib><creatorcontrib>Oberhardt, Valerie</creatorcontrib><creatorcontrib>Fuchs, Jonas</creatorcontrib><creatorcontrib>Hofmann, Maike</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Hengel, Hartmut</creatorcontrib><creatorcontrib>Halenius, Anne</creatorcontrib><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Cell Line</subject><subject>Coevolution</subject><subject>Complexity</subject><subject>Cytomegalovirus</subject><subject>Glycoproteins</subject><subject>Grooves</subject><subject>Histocompatibility antigen HLA</subject><subject>Histocompatibility Antigens - metabolism</subject><subject>Histocompatibility Antigens Class I</subject><subject>HLA-A Antigens - metabolism</subject><subject>Hominidae - genetics</subject><subject>Hominidae - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Peptides</subject><subject>Peptides - metabolism</subject><subject>Tat protein</subject><subject>Viral Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2Kqmxpz9yQJS5cAv5I4vhUoaUtlah6aDlbE2d2MUrsre1E4sLfXiMo0J488vzm6c08Qg45O-VMybOdh3QqJG9013DB35AVZ5pXba3ZHlkxJlTV1aLeJ-9TumWM6aZj78i-7KRSXIsVub9wC8aE1N7lMOEWxrC4OCd6_ZNzCj7DNniXplIO9PvlujqnuEBywdOUI2TcOkw04oIwUqDZ5WoTYpUhUxtwCeOcCwvxjkKcCggWqfP0JkzOuyF9IG83MCb8-PQekOsvn3-tL6urH1-_rc-vKlsLkSsLAxdDq_ta2m7gIITu2dC2qGT57FjbytLqUTLdWmyYVqrtBeqNBSV4p-QB-fSou5v7CQeLvpgfzS66qXgzAZz5t-PdjdmGxZRzMiVqXRROnhRi-D1jymZyyeI4gscwJyO00E3NRVMX9Pg_9DbM0Zf9CiVlI7RWXaHOHikbQ0oRN89uODMP4ZqHcM1LuGXi6PUSz_zfNOUf8WCiNA</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Zimmermann, Cosima</creator><creator>Watson, Gabrielle M</creator><creator>Bauersfeld, Liane</creator><creator>Berry, Richard</creator><creator>Ciblis, Barbara</creator><creator>Lan, Huan</creator><creator>Gerke, Carolin</creator><creator>Oberhardt, Valerie</creator><creator>Fuchs, Jonas</creator><creator>Hofmann, Maike</creator><creator>Freund, Christian</creator><creator>Rossjohn, Jamie</creator><creator>Momburg, Frank</creator><creator>Hengel, Hartmut</creator><creator>Halenius, Anne</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8410-8833</orcidid><orcidid>https://orcid.org/0000-0001-6335-1017</orcidid><orcidid>https://orcid.org/0000-0003-2956-1410</orcidid><orcidid>https://orcid.org/0009-0004-4790-2498</orcidid><orcidid>https://orcid.org/0000-0002-3482-816X</orcidid><orcidid>https://orcid.org/0000-0003-1974-212X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-7043-0469</orcidid><orcidid>https://orcid.org/0000-0001-7416-8226</orcidid></search><sort><creationdate>20240227</creationdate><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><author>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Cell Line</topic><topic>Coevolution</topic><topic>Complexity</topic><topic>Cytomegalovirus</topic><topic>Glycoproteins</topic><topic>Grooves</topic><topic>Histocompatibility antigen HLA</topic><topic>Histocompatibility Antigens - metabolism</topic><topic>Histocompatibility Antigens Class I</topic><topic>HLA-A Antigens - metabolism</topic><topic>Hominidae - genetics</topic><topic>Hominidae - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Peptides</topic><topic>Peptides - metabolism</topic><topic>Tat protein</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, Cosima</creatorcontrib><creatorcontrib>Watson, Gabrielle M</creatorcontrib><creatorcontrib>Bauersfeld, Liane</creatorcontrib><creatorcontrib>Berry, Richard</creatorcontrib><creatorcontrib>Ciblis, Barbara</creatorcontrib><creatorcontrib>Lan, Huan</creatorcontrib><creatorcontrib>Gerke, Carolin</creatorcontrib><creatorcontrib>Oberhardt, Valerie</creatorcontrib><creatorcontrib>Fuchs, Jonas</creatorcontrib><creatorcontrib>Hofmann, Maike</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Hengel, Hartmut</creatorcontrib><creatorcontrib>Halenius, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, Cosima</au><au>Watson, Gabrielle M</au><au>Bauersfeld, Liane</au><au>Berry, Richard</au><au>Ciblis, Barbara</au><au>Lan, Huan</au><au>Gerke, Carolin</au><au>Oberhardt, Valerie</au><au>Fuchs, Jonas</au><au>Hofmann, Maike</au><au>Freund, Christian</au><au>Rossjohn, Jamie</au><au>Momburg, Frank</au><au>Hengel, Hartmut</au><au>Halenius, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>121</volume><issue>9</issue><spage>e2315985121</spage><pages>e2315985121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38377192</pmid><doi>10.1073/pnas.2315985121</doi><orcidid>https://orcid.org/0000-0001-8410-8833</orcidid><orcidid>https://orcid.org/0000-0001-6335-1017</orcidid><orcidid>https://orcid.org/0000-0003-2956-1410</orcidid><orcidid>https://orcid.org/0009-0004-4790-2498</orcidid><orcidid>https://orcid.org/0000-0002-3482-816X</orcidid><orcidid>https://orcid.org/0000-0003-1974-212X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-7043-0469</orcidid><orcidid>https://orcid.org/0000-0001-7416-8226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (9), p.e2315985121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10907249
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
CD8 antigen
Cell activation
Cell Line
Coevolution
Complexity
Cytomegalovirus
Glycoproteins
Grooves
Histocompatibility antigen HLA
Histocompatibility Antigens - metabolism
Histocompatibility Antigens Class I
HLA-A Antigens - metabolism
Hominidae - genetics
Hominidae - metabolism
Humans
Immunology
Lymphocytes T
Major histocompatibility complex
Peptides
Peptides - metabolism
Tat protein
Viral Proteins - metabolism
title Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20cytomegalovirus%20US11%20antagonism%20and%20MHC-A%20evasion%20strategies%20reveal%20a%20tit-for-tat%20coevolutionary%20arms%20race%20in%20hominids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zimmermann,%20Cosima&rft.date=2024-02-27&rft.volume=121&rft.issue=9&rft.spage=e2315985121&rft.pages=e2315985121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2315985121&rft_dat=%3Cproquest_pubme%3E2933529978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933529978&rft_id=info:pmid/38377192&rfr_iscdi=true