Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids
Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility cl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (9), p.e2315985121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e2315985121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Zimmermann, Cosima Watson, Gabrielle M Bauersfeld, Liane Berry, Richard Ciblis, Barbara Lan, Huan Gerke, Carolin Oberhardt, Valerie Fuchs, Jonas Hofmann, Maike Freund, Christian Rossjohn, Jamie Momburg, Frank Hengel, Hartmut Halenius, Anne |
description | Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids. |
doi_str_mv | 10.1073/pnas.2315985121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10907249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933529978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2Kqmxpz9yQJS5cAv5I4vhUoaUtlah6aDlbE2d2MUrsre1E4sLfXiMo0J488vzm6c08Qg45O-VMybOdh3QqJG9013DB35AVZ5pXba3ZHlkxJlTV1aLeJ-9TumWM6aZj78i-7KRSXIsVub9wC8aE1N7lMOEWxrC4OCd6_ZNzCj7DNniXplIO9PvlujqnuEBywdOUI2TcOkw04oIwUqDZ5WoTYpUhUxtwCeOcCwvxjkKcCggWqfP0JkzOuyF9IG83MCb8-PQekOsvn3-tL6urH1-_rc-vKlsLkSsLAxdDq_ta2m7gIITu2dC2qGT57FjbytLqUTLdWmyYVqrtBeqNBSV4p-QB-fSou5v7CQeLvpgfzS66qXgzAZz5t-PdjdmGxZRzMiVqXRROnhRi-D1jymZyyeI4gscwJyO00E3NRVMX9Pg_9DbM0Zf9CiVlI7RWXaHOHikbQ0oRN89uODMP4ZqHcM1LuGXi6PUSz_zfNOUf8WCiNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933529978</pqid></control><display><type>article</type><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</creator><creatorcontrib>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</creatorcontrib><description>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2315985121</identifier><identifier>PMID: 38377192</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; CD8 antigen ; Cell activation ; Cell Line ; Coevolution ; Complexity ; Cytomegalovirus ; Glycoproteins ; Grooves ; Histocompatibility antigen HLA ; Histocompatibility Antigens - metabolism ; Histocompatibility Antigens Class I ; HLA-A Antigens - metabolism ; Hominidae - genetics ; Hominidae - metabolism ; Humans ; Immunology ; Lymphocytes T ; Major histocompatibility complex ; Peptides ; Peptides - metabolism ; Tat protein ; Viral Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (9), p.e2315985121</ispartof><rights>Copyright National Academy of Sciences Feb 27, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</citedby><cites>FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</cites><orcidid>0000-0001-8410-8833 ; 0000-0001-6335-1017 ; 0000-0003-2956-1410 ; 0009-0004-4790-2498 ; 0000-0002-3482-816X ; 0000-0003-1974-212X ; 0000-0002-2020-7522 ; 0000-0001-7043-0469 ; 0000-0001-7416-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38377192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, Cosima</creatorcontrib><creatorcontrib>Watson, Gabrielle M</creatorcontrib><creatorcontrib>Bauersfeld, Liane</creatorcontrib><creatorcontrib>Berry, Richard</creatorcontrib><creatorcontrib>Ciblis, Barbara</creatorcontrib><creatorcontrib>Lan, Huan</creatorcontrib><creatorcontrib>Gerke, Carolin</creatorcontrib><creatorcontrib>Oberhardt, Valerie</creatorcontrib><creatorcontrib>Fuchs, Jonas</creatorcontrib><creatorcontrib>Hofmann, Maike</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Hengel, Hartmut</creatorcontrib><creatorcontrib>Halenius, Anne</creatorcontrib><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Cell Line</subject><subject>Coevolution</subject><subject>Complexity</subject><subject>Cytomegalovirus</subject><subject>Glycoproteins</subject><subject>Grooves</subject><subject>Histocompatibility antigen HLA</subject><subject>Histocompatibility Antigens - metabolism</subject><subject>Histocompatibility Antigens Class I</subject><subject>HLA-A Antigens - metabolism</subject><subject>Hominidae - genetics</subject><subject>Hominidae - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Peptides</subject><subject>Peptides - metabolism</subject><subject>Tat protein</subject><subject>Viral Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2Kqmxpz9yQJS5cAv5I4vhUoaUtlah6aDlbE2d2MUrsre1E4sLfXiMo0J488vzm6c08Qg45O-VMybOdh3QqJG9013DB35AVZ5pXba3ZHlkxJlTV1aLeJ-9TumWM6aZj78i-7KRSXIsVub9wC8aE1N7lMOEWxrC4OCd6_ZNzCj7DNniXplIO9PvlujqnuEBywdOUI2TcOkw04oIwUqDZ5WoTYpUhUxtwCeOcCwvxjkKcCggWqfP0JkzOuyF9IG83MCb8-PQekOsvn3-tL6urH1-_rc-vKlsLkSsLAxdDq_ta2m7gIITu2dC2qGT57FjbytLqUTLdWmyYVqrtBeqNBSV4p-QB-fSou5v7CQeLvpgfzS66qXgzAZz5t-PdjdmGxZRzMiVqXRROnhRi-D1jymZyyeI4gscwJyO00E3NRVMX9Pg_9DbM0Zf9CiVlI7RWXaHOHikbQ0oRN89uODMP4ZqHcM1LuGXi6PUSz_zfNOUf8WCiNA</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Zimmermann, Cosima</creator><creator>Watson, Gabrielle M</creator><creator>Bauersfeld, Liane</creator><creator>Berry, Richard</creator><creator>Ciblis, Barbara</creator><creator>Lan, Huan</creator><creator>Gerke, Carolin</creator><creator>Oberhardt, Valerie</creator><creator>Fuchs, Jonas</creator><creator>Hofmann, Maike</creator><creator>Freund, Christian</creator><creator>Rossjohn, Jamie</creator><creator>Momburg, Frank</creator><creator>Hengel, Hartmut</creator><creator>Halenius, Anne</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8410-8833</orcidid><orcidid>https://orcid.org/0000-0001-6335-1017</orcidid><orcidid>https://orcid.org/0000-0003-2956-1410</orcidid><orcidid>https://orcid.org/0009-0004-4790-2498</orcidid><orcidid>https://orcid.org/0000-0002-3482-816X</orcidid><orcidid>https://orcid.org/0000-0003-1974-212X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-7043-0469</orcidid><orcidid>https://orcid.org/0000-0001-7416-8226</orcidid></search><sort><creationdate>20240227</creationdate><title>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</title><author>Zimmermann, Cosima ; Watson, Gabrielle M ; Bauersfeld, Liane ; Berry, Richard ; Ciblis, Barbara ; Lan, Huan ; Gerke, Carolin ; Oberhardt, Valerie ; Fuchs, Jonas ; Hofmann, Maike ; Freund, Christian ; Rossjohn, Jamie ; Momburg, Frank ; Hengel, Hartmut ; Halenius, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cad12d69b43c8d1a229b0d66e7369b80663b43be3096ce509776b2e9fca721873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Cell Line</topic><topic>Coevolution</topic><topic>Complexity</topic><topic>Cytomegalovirus</topic><topic>Glycoproteins</topic><topic>Grooves</topic><topic>Histocompatibility antigen HLA</topic><topic>Histocompatibility Antigens - metabolism</topic><topic>Histocompatibility Antigens Class I</topic><topic>HLA-A Antigens - metabolism</topic><topic>Hominidae - genetics</topic><topic>Hominidae - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Peptides</topic><topic>Peptides - metabolism</topic><topic>Tat protein</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, Cosima</creatorcontrib><creatorcontrib>Watson, Gabrielle M</creatorcontrib><creatorcontrib>Bauersfeld, Liane</creatorcontrib><creatorcontrib>Berry, Richard</creatorcontrib><creatorcontrib>Ciblis, Barbara</creatorcontrib><creatorcontrib>Lan, Huan</creatorcontrib><creatorcontrib>Gerke, Carolin</creatorcontrib><creatorcontrib>Oberhardt, Valerie</creatorcontrib><creatorcontrib>Fuchs, Jonas</creatorcontrib><creatorcontrib>Hofmann, Maike</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Hengel, Hartmut</creatorcontrib><creatorcontrib>Halenius, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, Cosima</au><au>Watson, Gabrielle M</au><au>Bauersfeld, Liane</au><au>Berry, Richard</au><au>Ciblis, Barbara</au><au>Lan, Huan</au><au>Gerke, Carolin</au><au>Oberhardt, Valerie</au><au>Fuchs, Jonas</au><au>Hofmann, Maike</au><au>Freund, Christian</au><au>Rossjohn, Jamie</au><au>Momburg, Frank</au><au>Hengel, Hartmut</au><au>Halenius, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>121</volume><issue>9</issue><spage>e2315985121</spage><pages>e2315985121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38377192</pmid><doi>10.1073/pnas.2315985121</doi><orcidid>https://orcid.org/0000-0001-8410-8833</orcidid><orcidid>https://orcid.org/0000-0001-6335-1017</orcidid><orcidid>https://orcid.org/0000-0003-2956-1410</orcidid><orcidid>https://orcid.org/0009-0004-4790-2498</orcidid><orcidid>https://orcid.org/0000-0002-3482-816X</orcidid><orcidid>https://orcid.org/0000-0003-1974-212X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-7043-0469</orcidid><orcidid>https://orcid.org/0000-0001-7416-8226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (9), p.e2315985121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10907249 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences CD8 antigen Cell activation Cell Line Coevolution Complexity Cytomegalovirus Glycoproteins Grooves Histocompatibility antigen HLA Histocompatibility Antigens - metabolism Histocompatibility Antigens Class I HLA-A Antigens - metabolism Hominidae - genetics Hominidae - metabolism Humans Immunology Lymphocytes T Major histocompatibility complex Peptides Peptides - metabolism Tat protein Viral Proteins - metabolism |
title | Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20cytomegalovirus%20US11%20antagonism%20and%20MHC-A%20evasion%20strategies%20reveal%20a%20tit-for-tat%20coevolutionary%20arms%20race%20in%20hominids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zimmermann,%20Cosima&rft.date=2024-02-27&rft.volume=121&rft.issue=9&rft.spage=e2315985121&rft.pages=e2315985121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2315985121&rft_dat=%3Cproquest_pubme%3E2933529978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933529978&rft_id=info:pmid/38377192&rfr_iscdi=true |