Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth
Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication tech...
Gespeichert in:
Veröffentlicht in: | ACS applied electronic materials 2024-02, Vol.6 (2), p.748-760 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 2 |
container_start_page | 748 |
container_title | ACS applied electronic materials |
container_volume | 6 |
creator | McKibben, Nicholas Curtis, Michael Maryon, Olivia Sawyer, Mone’t Lazouskaya, Maryna Eixenberger, Josh Deng, Zhangxian Estrada, David |
description | Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene. |
doi_str_mv | 10.1021/acsaelm.3c01175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10902849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937337532</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-ed0d3054493f58d2241dd12c1ab40a0ed8513677126c2e48786db822afa7076f3</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EItGQNTtksUJCnfjRD88KjaK8UAhZhLXlsaunnbjtxnaD-Ir8cpzMEIUFK5fkc-tW1UXoPSWHlDB6pHRS4MZDrgmlXfMK7bOWd1VLKX_9ot5DByndElIkrGYNfYv2uKh5IwjfR_enIY6zU9kGj5U3eAUxpODwV8j4Olqfrd_g0OMrq-_A4Svlw6RittoBvvB3uA8Rn9vNUN3AOEFUeY6Av1kdAzjQOQZvNV5Nk7P6ySQ9uVyrnCF6MPgsqmkAD6UIv_PwDr3plUtwsHsX6Mfpyc3xeXX5_ezieHVZqZrSXIEhhpOmrpe8b4RhrKbGUKapWtdEETCiobztOspazaAWnWjNWjCmetWRru35An3Z9p3m9QhGg89ROTlFO6r4RwZl5b8_3g5yE35JSpaEieK7QB-3HULKViZtM-hBB-_L1pIxwTrxCH3a2cTwc4aU5WiTBueUhzAnyZa847xrOCvo0RYtp0spQv88DCXyMW-5y1vu8i6KDy93eOb_pluAz1ugKOVtmKMvJ_1vuwemurh3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937337532</pqid></control><display><type>article</type><title>Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth</title><source>ACS Publications</source><creator>McKibben, Nicholas ; Curtis, Michael ; Maryon, Olivia ; Sawyer, Mone’t ; Lazouskaya, Maryna ; Eixenberger, Josh ; Deng, Zhangxian ; Estrada, David</creator><creatorcontrib>McKibben, Nicholas ; Curtis, Michael ; Maryon, Olivia ; Sawyer, Mone’t ; Lazouskaya, Maryna ; Eixenberger, Josh ; Deng, Zhangxian ; Estrada, David ; Boise State Univ., ID (United States)</creatorcontrib><description>Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.3c01175</identifier><identifier>PMID: 38435803</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>aerosol jet printing ; chemical vapor deposition ; high-temperature microelectronics ; MATERIALS SCIENCE ; nanoparticle ink formulation ; nickel nanoparticle synthesis ; patterned graphene growth ; redox chemistry ; thin film characterization</subject><ispartof>ACS applied electronic materials, 2024-02, Vol.6 (2), p.748-760</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a411t-ed0d3054493f58d2241dd12c1ab40a0ed8513677126c2e48786db822afa7076f3</cites><orcidid>0000-0002-1546-5682 ; 0000-0001-5894-0773 ; 0000000158940773 ; 0000000215465682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaelm.3c01175$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaelm.3c01175$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2282789$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>Sawyer, Mone’t</creatorcontrib><creatorcontrib>Lazouskaya, Maryna</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Deng, Zhangxian</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Boise State Univ., ID (United States)</creatorcontrib><title>Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth</title><title>ACS applied electronic materials</title><addtitle>ACS Appl. Electron. Mater</addtitle><description>Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.</description><subject>aerosol jet printing</subject><subject>chemical vapor deposition</subject><subject>high-temperature microelectronics</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticle ink formulation</subject><subject>nickel nanoparticle synthesis</subject><subject>patterned graphene growth</subject><subject>redox chemistry</subject><subject>thin film characterization</subject><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctuFDEQRS0EItGQNTtksUJCnfjRD88KjaK8UAhZhLXlsaunnbjtxnaD-Ir8cpzMEIUFK5fkc-tW1UXoPSWHlDB6pHRS4MZDrgmlXfMK7bOWd1VLKX_9ot5DByndElIkrGYNfYv2uKh5IwjfR_enIY6zU9kGj5U3eAUxpODwV8j4Olqfrd_g0OMrq-_A4Svlw6RittoBvvB3uA8Rn9vNUN3AOEFUeY6Av1kdAzjQOQZvNV5Nk7P6ySQ9uVyrnCF6MPgsqmkAD6UIv_PwDr3plUtwsHsX6Mfpyc3xeXX5_ezieHVZqZrSXIEhhpOmrpe8b4RhrKbGUKapWtdEETCiobztOspazaAWnWjNWjCmetWRru35An3Z9p3m9QhGg89ROTlFO6r4RwZl5b8_3g5yE35JSpaEieK7QB-3HULKViZtM-hBB-_L1pIxwTrxCH3a2cTwc4aU5WiTBueUhzAnyZa847xrOCvo0RYtp0spQv88DCXyMW-5y1vu8i6KDy93eOb_pluAz1ugKOVtmKMvJ_1vuwemurh3</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>McKibben, Nicholas</creator><creator>Curtis, Michael</creator><creator>Maryon, Olivia</creator><creator>Sawyer, Mone’t</creator><creator>Lazouskaya, Maryna</creator><creator>Eixenberger, Josh</creator><creator>Deng, Zhangxian</creator><creator>Estrada, David</creator><general>American Chemical Society</general><general>ACS Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1546-5682</orcidid><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000000158940773</orcidid><orcidid>https://orcid.org/0000000215465682</orcidid></search><sort><creationdate>20240227</creationdate><title>Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth</title><author>McKibben, Nicholas ; Curtis, Michael ; Maryon, Olivia ; Sawyer, Mone’t ; Lazouskaya, Maryna ; Eixenberger, Josh ; Deng, Zhangxian ; Estrada, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-ed0d3054493f58d2241dd12c1ab40a0ed8513677126c2e48786db822afa7076f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerosol jet printing</topic><topic>chemical vapor deposition</topic><topic>high-temperature microelectronics</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticle ink formulation</topic><topic>nickel nanoparticle synthesis</topic><topic>patterned graphene growth</topic><topic>redox chemistry</topic><topic>thin film characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>Sawyer, Mone’t</creatorcontrib><creatorcontrib>Lazouskaya, Maryna</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Deng, Zhangxian</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Boise State Univ., ID (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKibben, Nicholas</au><au>Curtis, Michael</au><au>Maryon, Olivia</au><au>Sawyer, Mone’t</au><au>Lazouskaya, Maryna</au><au>Eixenberger, Josh</au><au>Deng, Zhangxian</au><au>Estrada, David</au><aucorp>Boise State Univ., ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl. Electron. Mater</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>6</volume><issue>2</issue><spage>748</spage><epage>760</epage><pages>748-760</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38435803</pmid><doi>10.1021/acsaelm.3c01175</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1546-5682</orcidid><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000000158940773</orcidid><orcidid>https://orcid.org/0000000215465682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2637-6113 |
ispartof | ACS applied electronic materials, 2024-02, Vol.6 (2), p.748-760 |
issn | 2637-6113 2637-6113 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10902849 |
source | ACS Publications |
subjects | aerosol jet printing chemical vapor deposition high-temperature microelectronics MATERIALS SCIENCE nanoparticle ink formulation nickel nanoparticle synthesis patterned graphene growth redox chemistry thin film characterization |
title | Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20and%20Aerosol%20Jet%20Printing%20of%20Nickel%20Nanoparticle%20Ink%20for%20High-Temperature%20Microelectronic%20Applications%20and%20Patterned%20Graphene%20Growth&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=McKibben,%20Nicholas&rft.aucorp=Boise%20State%20Univ.,%20ID%20(United%20States)&rft.date=2024-02-27&rft.volume=6&rft.issue=2&rft.spage=748&rft.epage=760&rft.pages=748-760&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.3c01175&rft_dat=%3Cproquest_pubme%3E2937337532%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937337532&rft_id=info:pmid/38435803&rfr_iscdi=true |