A single-cell time-lapse of mouse prenatal development from gastrula to birth
The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup co...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-02, Vol.626 (8001), p.1084-1093 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 8001 |
container_start_page | 1084 |
container_title | Nature (London) |
container_volume | 626 |
creator | Qiu, Chengxiang Martin, Beth K. Welsh, Ian C. Daza, Riza M. Le, Truc-Mai Huang, Xingfan Nichols, Eva K. Taylor, Megan L. Fulton, Olivia O’Day, Diana R. Gomes, Anne Roshella Ilcisin, Saskia Srivatsan, Sanjay Deng, Xinxian Disteche, Christine M. Noble, William Stafford Hamazaki, Nobuhiko Moens, Cecilia B. Kimelman, David Cao, Junyue Schier, Alexander F. Spielmann, Malte Murray, Stephen A. Trapnell, Cole Shendure, Jay |
description | The house mouse (
Mus musculus
) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans
1
,
2
. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing
3
to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data
4
–
8
from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth. |
doi_str_mv | 10.1038/s41586-024-07069-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10901739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937395805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQha0KRG8LL9AFisSGjWH8F9urqqpKQapgA2vLdpzbVE6c2kmrvk2fhSfD5Zbys2A1luabM3N8EDoi8I4AU-8LJ0K1GCjHIKHV-HYPbQiXLeatks_QBoAqDIq1--iglCsAEETyF2ifKSaE1HqDPp80ZZi2MWAfYmyWYQw42rmEJvXf78e01tecw2QXG5su3ISY5jFMS9PnNDZbW5a8RtssqXFDXi5foue9jSW8eqyH6NuHs6-nH_HFl_NPpycX2HMpFtw56luinKDEESuF9MJZIqUCz4BoCp13Uvfc-Y6LIIQSSgvLQIiWMSkdO0THO915dWPofL0o22jmPIw235lkB_N3ZxouzTbdGAIaiGS6Krx9VMjpeg1lMeNQHv7ATqG6NlRTSQlIwiv65h_0Kq15qv4qxaqYUCAqRXeUz6mUHPqnawiYh7zMLi9T8zI_8zK3dej1nz6eRn4FVAG2A0ptTduQf-_-j-wPvMaiFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937395805</pqid></control><display><type>article</type><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</creator><creatorcontrib>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</creatorcontrib><description>The house mouse (
Mus musculus
) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans
1
,
2
. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing
3
to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data
4
–
8
from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07069-w</identifier><identifier>PMID: 38355799</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/136/2060 ; 631/136/2086 ; 631/208/199 ; 64/60 ; Competition ; Cooperation ; Embryos ; Endowment ; Equilibrium ; Experiments ; Games ; Group selection ; Humanities and Social Sciences ; Hypotheses ; Mammals ; multidisciplinary ; Mutation ; Prenatal development ; Psychology ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2024-02, Vol.626 (8001), p.1084-1093</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 29, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</citedby><cites>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</cites><orcidid>0000-0003-1635-8675 ; 0000-0002-9261-4506 ; 0000-0002-1516-1865 ; 0000-0002-8105-4347 ; 0009-0002-2511-1498 ; 0000-0002-6346-8669 ; 0000-0001-7283-4715 ; 0009-0007-3153-5373 ; 0000-0002-0594-1702 ; 0000-0002-9661-014X ; 0000-0002-5433-495X ; 0000-0002-0583-4683 ; 0000-0002-5007-218X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07069-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07069-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38355799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Chengxiang</creatorcontrib><creatorcontrib>Martin, Beth K.</creatorcontrib><creatorcontrib>Welsh, Ian C.</creatorcontrib><creatorcontrib>Daza, Riza M.</creatorcontrib><creatorcontrib>Le, Truc-Mai</creatorcontrib><creatorcontrib>Huang, Xingfan</creatorcontrib><creatorcontrib>Nichols, Eva K.</creatorcontrib><creatorcontrib>Taylor, Megan L.</creatorcontrib><creatorcontrib>Fulton, Olivia</creatorcontrib><creatorcontrib>O’Day, Diana R.</creatorcontrib><creatorcontrib>Gomes, Anne Roshella</creatorcontrib><creatorcontrib>Ilcisin, Saskia</creatorcontrib><creatorcontrib>Srivatsan, Sanjay</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Disteche, Christine M.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><creatorcontrib>Hamazaki, Nobuhiko</creatorcontrib><creatorcontrib>Moens, Cecilia B.</creatorcontrib><creatorcontrib>Kimelman, David</creatorcontrib><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Schier, Alexander F.</creatorcontrib><creatorcontrib>Spielmann, Malte</creatorcontrib><creatorcontrib>Murray, Stephen A.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The house mouse (
Mus musculus
) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans
1
,
2
. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing
3
to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data
4
–
8
from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</description><subject>38/39</subject><subject>631/136/2060</subject><subject>631/136/2086</subject><subject>631/208/199</subject><subject>64/60</subject><subject>Competition</subject><subject>Cooperation</subject><subject>Embryos</subject><subject>Endowment</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Games</subject><subject>Group selection</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Mammals</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Prenatal development</subject><subject>Psychology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1u1TAQha0KRG8LL9AFisSGjWH8F9urqqpKQapgA2vLdpzbVE6c2kmrvk2fhSfD5Zbys2A1luabM3N8EDoi8I4AU-8LJ0K1GCjHIKHV-HYPbQiXLeatks_QBoAqDIq1--iglCsAEETyF2ifKSaE1HqDPp80ZZi2MWAfYmyWYQw42rmEJvXf78e01tecw2QXG5su3ISY5jFMS9PnNDZbW5a8RtssqXFDXi5foue9jSW8eqyH6NuHs6-nH_HFl_NPpycX2HMpFtw56luinKDEESuF9MJZIqUCz4BoCp13Uvfc-Y6LIIQSSgvLQIiWMSkdO0THO915dWPofL0o22jmPIw235lkB_N3ZxouzTbdGAIaiGS6Krx9VMjpeg1lMeNQHv7ATqG6NlRTSQlIwiv65h_0Kq15qv4qxaqYUCAqRXeUz6mUHPqnawiYh7zMLi9T8zI_8zK3dej1nz6eRn4FVAG2A0ptTduQf-_-j-wPvMaiFQ</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Qiu, Chengxiang</creator><creator>Martin, Beth K.</creator><creator>Welsh, Ian C.</creator><creator>Daza, Riza M.</creator><creator>Le, Truc-Mai</creator><creator>Huang, Xingfan</creator><creator>Nichols, Eva K.</creator><creator>Taylor, Megan L.</creator><creator>Fulton, Olivia</creator><creator>O’Day, Diana R.</creator><creator>Gomes, Anne Roshella</creator><creator>Ilcisin, Saskia</creator><creator>Srivatsan, Sanjay</creator><creator>Deng, Xinxian</creator><creator>Disteche, Christine M.</creator><creator>Noble, William Stafford</creator><creator>Hamazaki, Nobuhiko</creator><creator>Moens, Cecilia B.</creator><creator>Kimelman, David</creator><creator>Cao, Junyue</creator><creator>Schier, Alexander F.</creator><creator>Spielmann, Malte</creator><creator>Murray, Stephen A.</creator><creator>Trapnell, Cole</creator><creator>Shendure, Jay</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1635-8675</orcidid><orcidid>https://orcid.org/0000-0002-9261-4506</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0009-0002-2511-1498</orcidid><orcidid>https://orcid.org/0000-0002-6346-8669</orcidid><orcidid>https://orcid.org/0000-0001-7283-4715</orcidid><orcidid>https://orcid.org/0009-0007-3153-5373</orcidid><orcidid>https://orcid.org/0000-0002-0594-1702</orcidid><orcidid>https://orcid.org/0000-0002-9661-014X</orcidid><orcidid>https://orcid.org/0000-0002-5433-495X</orcidid><orcidid>https://orcid.org/0000-0002-0583-4683</orcidid><orcidid>https://orcid.org/0000-0002-5007-218X</orcidid></search><sort><creationdate>20240229</creationdate><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><author>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>631/136/2060</topic><topic>631/136/2086</topic><topic>631/208/199</topic><topic>64/60</topic><topic>Competition</topic><topic>Cooperation</topic><topic>Embryos</topic><topic>Endowment</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Games</topic><topic>Group selection</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Mammals</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Prenatal development</topic><topic>Psychology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Chengxiang</creatorcontrib><creatorcontrib>Martin, Beth K.</creatorcontrib><creatorcontrib>Welsh, Ian C.</creatorcontrib><creatorcontrib>Daza, Riza M.</creatorcontrib><creatorcontrib>Le, Truc-Mai</creatorcontrib><creatorcontrib>Huang, Xingfan</creatorcontrib><creatorcontrib>Nichols, Eva K.</creatorcontrib><creatorcontrib>Taylor, Megan L.</creatorcontrib><creatorcontrib>Fulton, Olivia</creatorcontrib><creatorcontrib>O’Day, Diana R.</creatorcontrib><creatorcontrib>Gomes, Anne Roshella</creatorcontrib><creatorcontrib>Ilcisin, Saskia</creatorcontrib><creatorcontrib>Srivatsan, Sanjay</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Disteche, Christine M.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><creatorcontrib>Hamazaki, Nobuhiko</creatorcontrib><creatorcontrib>Moens, Cecilia B.</creatorcontrib><creatorcontrib>Kimelman, David</creatorcontrib><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Schier, Alexander F.</creatorcontrib><creatorcontrib>Spielmann, Malte</creatorcontrib><creatorcontrib>Murray, Stephen A.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Chengxiang</au><au>Martin, Beth K.</au><au>Welsh, Ian C.</au><au>Daza, Riza M.</au><au>Le, Truc-Mai</au><au>Huang, Xingfan</au><au>Nichols, Eva K.</au><au>Taylor, Megan L.</au><au>Fulton, Olivia</au><au>O’Day, Diana R.</au><au>Gomes, Anne Roshella</au><au>Ilcisin, Saskia</au><au>Srivatsan, Sanjay</au><au>Deng, Xinxian</au><au>Disteche, Christine M.</au><au>Noble, William Stafford</au><au>Hamazaki, Nobuhiko</au><au>Moens, Cecilia B.</au><au>Kimelman, David</au><au>Cao, Junyue</au><au>Schier, Alexander F.</au><au>Spielmann, Malte</au><au>Murray, Stephen A.</au><au>Trapnell, Cole</au><au>Shendure, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-cell time-lapse of mouse prenatal development from gastrula to birth</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>626</volume><issue>8001</issue><spage>1084</spage><epage>1093</epage><pages>1084-1093</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>The house mouse (
Mus musculus
) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans
1
,
2
. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing
3
to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data
4
–
8
from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38355799</pmid><doi>10.1038/s41586-024-07069-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1635-8675</orcidid><orcidid>https://orcid.org/0000-0002-9261-4506</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0009-0002-2511-1498</orcidid><orcidid>https://orcid.org/0000-0002-6346-8669</orcidid><orcidid>https://orcid.org/0000-0001-7283-4715</orcidid><orcidid>https://orcid.org/0009-0007-3153-5373</orcidid><orcidid>https://orcid.org/0000-0002-0594-1702</orcidid><orcidid>https://orcid.org/0000-0002-9661-014X</orcidid><orcidid>https://orcid.org/0000-0002-5433-495X</orcidid><orcidid>https://orcid.org/0000-0002-0583-4683</orcidid><orcidid>https://orcid.org/0000-0002-5007-218X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-02, Vol.626 (8001), p.1084-1093 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10901739 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 38/39 631/136/2060 631/136/2086 631/208/199 64/60 Competition Cooperation Embryos Endowment Equilibrium Experiments Games Group selection Humanities and Social Sciences Hypotheses Mammals multidisciplinary Mutation Prenatal development Psychology Science Science (multidisciplinary) |
title | A single-cell time-lapse of mouse prenatal development from gastrula to birth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-cell%20time-lapse%20of%C2%A0mouse%20prenatal%20development%20from%20gastrula%20to%20birth&rft.jtitle=Nature%20(London)&rft.au=Qiu,%20Chengxiang&rft.date=2024-02-29&rft.volume=626&rft.issue=8001&rft.spage=1084&rft.epage=1093&rft.pages=1084-1093&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07069-w&rft_dat=%3Cproquest_pubme%3E2937395805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937395805&rft_id=info:pmid/38355799&rfr_iscdi=true |