A single-cell time-lapse of mouse prenatal development from gastrula to birth

The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-02, Vol.626 (8001), p.1084-1093
Hauptverfasser: Qiu, Chengxiang, Martin, Beth K., Welsh, Ian C., Daza, Riza M., Le, Truc-Mai, Huang, Xingfan, Nichols, Eva K., Taylor, Megan L., Fulton, Olivia, O’Day, Diana R., Gomes, Anne Roshella, Ilcisin, Saskia, Srivatsan, Sanjay, Deng, Xinxian, Disteche, Christine M., Noble, William Stafford, Hamazaki, Nobuhiko, Moens, Cecilia B., Kimelman, David, Cao, Junyue, Schier, Alexander F., Spielmann, Malte, Murray, Stephen A., Trapnell, Cole, Shendure, Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 8001
container_start_page 1084
container_title Nature (London)
container_volume 626
creator Qiu, Chengxiang
Martin, Beth K.
Welsh, Ian C.
Daza, Riza M.
Le, Truc-Mai
Huang, Xingfan
Nichols, Eva K.
Taylor, Megan L.
Fulton, Olivia
O’Day, Diana R.
Gomes, Anne Roshella
Ilcisin, Saskia
Srivatsan, Sanjay
Deng, Xinxian
Disteche, Christine M.
Noble, William Stafford
Hamazaki, Nobuhiko
Moens, Cecilia B.
Kimelman, David
Cao, Junyue
Schier, Alexander F.
Spielmann, Malte
Murray, Stephen A.
Trapnell, Cole
Shendure, Jay
description The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing 3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data 4 – 8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb. Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.
doi_str_mv 10.1038/s41586-024-07069-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10901739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937395805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQha0KRG8LL9AFisSGjWH8F9urqqpKQapgA2vLdpzbVE6c2kmrvk2fhSfD5Zbys2A1luabM3N8EDoi8I4AU-8LJ0K1GCjHIKHV-HYPbQiXLeatks_QBoAqDIq1--iglCsAEETyF2ifKSaE1HqDPp80ZZi2MWAfYmyWYQw42rmEJvXf78e01tecw2QXG5su3ISY5jFMS9PnNDZbW5a8RtssqXFDXi5foue9jSW8eqyH6NuHs6-nH_HFl_NPpycX2HMpFtw56luinKDEESuF9MJZIqUCz4BoCp13Uvfc-Y6LIIQSSgvLQIiWMSkdO0THO915dWPofL0o22jmPIw235lkB_N3ZxouzTbdGAIaiGS6Krx9VMjpeg1lMeNQHv7ATqG6NlRTSQlIwiv65h_0Kq15qv4qxaqYUCAqRXeUz6mUHPqnawiYh7zMLi9T8zI_8zK3dej1nz6eRn4FVAG2A0ptTduQf-_-j-wPvMaiFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937395805</pqid></control><display><type>article</type><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</creator><creatorcontrib>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</creatorcontrib><description>The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing 3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data 4 – 8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb. Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07069-w</identifier><identifier>PMID: 38355799</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/136/2060 ; 631/136/2086 ; 631/208/199 ; 64/60 ; Competition ; Cooperation ; Embryos ; Endowment ; Equilibrium ; Experiments ; Games ; Group selection ; Humanities and Social Sciences ; Hypotheses ; Mammals ; multidisciplinary ; Mutation ; Prenatal development ; Psychology ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2024-02, Vol.626 (8001), p.1084-1093</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 29, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</citedby><cites>FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</cites><orcidid>0000-0003-1635-8675 ; 0000-0002-9261-4506 ; 0000-0002-1516-1865 ; 0000-0002-8105-4347 ; 0009-0002-2511-1498 ; 0000-0002-6346-8669 ; 0000-0001-7283-4715 ; 0009-0007-3153-5373 ; 0000-0002-0594-1702 ; 0000-0002-9661-014X ; 0000-0002-5433-495X ; 0000-0002-0583-4683 ; 0000-0002-5007-218X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07069-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07069-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38355799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Chengxiang</creatorcontrib><creatorcontrib>Martin, Beth K.</creatorcontrib><creatorcontrib>Welsh, Ian C.</creatorcontrib><creatorcontrib>Daza, Riza M.</creatorcontrib><creatorcontrib>Le, Truc-Mai</creatorcontrib><creatorcontrib>Huang, Xingfan</creatorcontrib><creatorcontrib>Nichols, Eva K.</creatorcontrib><creatorcontrib>Taylor, Megan L.</creatorcontrib><creatorcontrib>Fulton, Olivia</creatorcontrib><creatorcontrib>O’Day, Diana R.</creatorcontrib><creatorcontrib>Gomes, Anne Roshella</creatorcontrib><creatorcontrib>Ilcisin, Saskia</creatorcontrib><creatorcontrib>Srivatsan, Sanjay</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Disteche, Christine M.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><creatorcontrib>Hamazaki, Nobuhiko</creatorcontrib><creatorcontrib>Moens, Cecilia B.</creatorcontrib><creatorcontrib>Kimelman, David</creatorcontrib><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Schier, Alexander F.</creatorcontrib><creatorcontrib>Spielmann, Malte</creatorcontrib><creatorcontrib>Murray, Stephen A.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing 3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data 4 – 8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb. Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</description><subject>38/39</subject><subject>631/136/2060</subject><subject>631/136/2086</subject><subject>631/208/199</subject><subject>64/60</subject><subject>Competition</subject><subject>Cooperation</subject><subject>Embryos</subject><subject>Endowment</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Games</subject><subject>Group selection</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Mammals</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Prenatal development</subject><subject>Psychology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1u1TAQha0KRG8LL9AFisSGjWH8F9urqqpKQapgA2vLdpzbVE6c2kmrvk2fhSfD5Zbys2A1luabM3N8EDoi8I4AU-8LJ0K1GCjHIKHV-HYPbQiXLeatks_QBoAqDIq1--iglCsAEETyF2ifKSaE1HqDPp80ZZi2MWAfYmyWYQw42rmEJvXf78e01tecw2QXG5su3ISY5jFMS9PnNDZbW5a8RtssqXFDXi5foue9jSW8eqyH6NuHs6-nH_HFl_NPpycX2HMpFtw56luinKDEESuF9MJZIqUCz4BoCp13Uvfc-Y6LIIQSSgvLQIiWMSkdO0THO915dWPofL0o22jmPIw235lkB_N3ZxouzTbdGAIaiGS6Krx9VMjpeg1lMeNQHv7ATqG6NlRTSQlIwiv65h_0Kq15qv4qxaqYUCAqRXeUz6mUHPqnawiYh7zMLi9T8zI_8zK3dej1nz6eRn4FVAG2A0ptTduQf-_-j-wPvMaiFQ</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Qiu, Chengxiang</creator><creator>Martin, Beth K.</creator><creator>Welsh, Ian C.</creator><creator>Daza, Riza M.</creator><creator>Le, Truc-Mai</creator><creator>Huang, Xingfan</creator><creator>Nichols, Eva K.</creator><creator>Taylor, Megan L.</creator><creator>Fulton, Olivia</creator><creator>O’Day, Diana R.</creator><creator>Gomes, Anne Roshella</creator><creator>Ilcisin, Saskia</creator><creator>Srivatsan, Sanjay</creator><creator>Deng, Xinxian</creator><creator>Disteche, Christine M.</creator><creator>Noble, William Stafford</creator><creator>Hamazaki, Nobuhiko</creator><creator>Moens, Cecilia B.</creator><creator>Kimelman, David</creator><creator>Cao, Junyue</creator><creator>Schier, Alexander F.</creator><creator>Spielmann, Malte</creator><creator>Murray, Stephen A.</creator><creator>Trapnell, Cole</creator><creator>Shendure, Jay</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1635-8675</orcidid><orcidid>https://orcid.org/0000-0002-9261-4506</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0009-0002-2511-1498</orcidid><orcidid>https://orcid.org/0000-0002-6346-8669</orcidid><orcidid>https://orcid.org/0000-0001-7283-4715</orcidid><orcidid>https://orcid.org/0009-0007-3153-5373</orcidid><orcidid>https://orcid.org/0000-0002-0594-1702</orcidid><orcidid>https://orcid.org/0000-0002-9661-014X</orcidid><orcidid>https://orcid.org/0000-0002-5433-495X</orcidid><orcidid>https://orcid.org/0000-0002-0583-4683</orcidid><orcidid>https://orcid.org/0000-0002-5007-218X</orcidid></search><sort><creationdate>20240229</creationdate><title>A single-cell time-lapse of mouse prenatal development from gastrula to birth</title><author>Qiu, Chengxiang ; Martin, Beth K. ; Welsh, Ian C. ; Daza, Riza M. ; Le, Truc-Mai ; Huang, Xingfan ; Nichols, Eva K. ; Taylor, Megan L. ; Fulton, Olivia ; O’Day, Diana R. ; Gomes, Anne Roshella ; Ilcisin, Saskia ; Srivatsan, Sanjay ; Deng, Xinxian ; Disteche, Christine M. ; Noble, William Stafford ; Hamazaki, Nobuhiko ; Moens, Cecilia B. ; Kimelman, David ; Cao, Junyue ; Schier, Alexander F. ; Spielmann, Malte ; Murray, Stephen A. ; Trapnell, Cole ; Shendure, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-db2c618b521b1a757c5ba17780c301920dcb79f4bcd45e5585895a305563377b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>631/136/2060</topic><topic>631/136/2086</topic><topic>631/208/199</topic><topic>64/60</topic><topic>Competition</topic><topic>Cooperation</topic><topic>Embryos</topic><topic>Endowment</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Games</topic><topic>Group selection</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Mammals</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Prenatal development</topic><topic>Psychology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Chengxiang</creatorcontrib><creatorcontrib>Martin, Beth K.</creatorcontrib><creatorcontrib>Welsh, Ian C.</creatorcontrib><creatorcontrib>Daza, Riza M.</creatorcontrib><creatorcontrib>Le, Truc-Mai</creatorcontrib><creatorcontrib>Huang, Xingfan</creatorcontrib><creatorcontrib>Nichols, Eva K.</creatorcontrib><creatorcontrib>Taylor, Megan L.</creatorcontrib><creatorcontrib>Fulton, Olivia</creatorcontrib><creatorcontrib>O’Day, Diana R.</creatorcontrib><creatorcontrib>Gomes, Anne Roshella</creatorcontrib><creatorcontrib>Ilcisin, Saskia</creatorcontrib><creatorcontrib>Srivatsan, Sanjay</creatorcontrib><creatorcontrib>Deng, Xinxian</creatorcontrib><creatorcontrib>Disteche, Christine M.</creatorcontrib><creatorcontrib>Noble, William Stafford</creatorcontrib><creatorcontrib>Hamazaki, Nobuhiko</creatorcontrib><creatorcontrib>Moens, Cecilia B.</creatorcontrib><creatorcontrib>Kimelman, David</creatorcontrib><creatorcontrib>Cao, Junyue</creatorcontrib><creatorcontrib>Schier, Alexander F.</creatorcontrib><creatorcontrib>Spielmann, Malte</creatorcontrib><creatorcontrib>Murray, Stephen A.</creatorcontrib><creatorcontrib>Trapnell, Cole</creatorcontrib><creatorcontrib>Shendure, Jay</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Chengxiang</au><au>Martin, Beth K.</au><au>Welsh, Ian C.</au><au>Daza, Riza M.</au><au>Le, Truc-Mai</au><au>Huang, Xingfan</au><au>Nichols, Eva K.</au><au>Taylor, Megan L.</au><au>Fulton, Olivia</au><au>O’Day, Diana R.</au><au>Gomes, Anne Roshella</au><au>Ilcisin, Saskia</au><au>Srivatsan, Sanjay</au><au>Deng, Xinxian</au><au>Disteche, Christine M.</au><au>Noble, William Stafford</au><au>Hamazaki, Nobuhiko</au><au>Moens, Cecilia B.</au><au>Kimelman, David</au><au>Cao, Junyue</au><au>Schier, Alexander F.</au><au>Spielmann, Malte</au><au>Murray, Stephen A.</au><au>Trapnell, Cole</au><au>Shendure, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-cell time-lapse of mouse prenatal development from gastrula to birth</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>626</volume><issue>8001</issue><spage>1084</spage><epage>1093</epage><pages>1084-1093</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>The house mouse ( Mus musculus ) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans 1 , 2 . Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing 3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data 4 – 8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb. Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38355799</pmid><doi>10.1038/s41586-024-07069-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1635-8675</orcidid><orcidid>https://orcid.org/0000-0002-9261-4506</orcidid><orcidid>https://orcid.org/0000-0002-1516-1865</orcidid><orcidid>https://orcid.org/0000-0002-8105-4347</orcidid><orcidid>https://orcid.org/0009-0002-2511-1498</orcidid><orcidid>https://orcid.org/0000-0002-6346-8669</orcidid><orcidid>https://orcid.org/0000-0001-7283-4715</orcidid><orcidid>https://orcid.org/0009-0007-3153-5373</orcidid><orcidid>https://orcid.org/0000-0002-0594-1702</orcidid><orcidid>https://orcid.org/0000-0002-9661-014X</orcidid><orcidid>https://orcid.org/0000-0002-5433-495X</orcidid><orcidid>https://orcid.org/0000-0002-0583-4683</orcidid><orcidid>https://orcid.org/0000-0002-5007-218X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (8001), p.1084-1093
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10901739
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 38/39
631/136/2060
631/136/2086
631/208/199
64/60
Competition
Cooperation
Embryos
Endowment
Equilibrium
Experiments
Games
Group selection
Humanities and Social Sciences
Hypotheses
Mammals
multidisciplinary
Mutation
Prenatal development
Psychology
Science
Science (multidisciplinary)
title A single-cell time-lapse of mouse prenatal development from gastrula to birth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-cell%20time-lapse%20of%C2%A0mouse%20prenatal%20development%20from%20gastrula%20to%20birth&rft.jtitle=Nature%20(London)&rft.au=Qiu,%20Chengxiang&rft.date=2024-02-29&rft.volume=626&rft.issue=8001&rft.spage=1084&rft.epage=1093&rft.pages=1084-1093&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07069-w&rft_dat=%3Cproquest_pubme%3E2937395805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937395805&rft_id=info:pmid/38355799&rfr_iscdi=true