Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling

Abstract Aims CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2024-02, Vol.120 (1), p.44-55
Hauptverfasser: Xia, Yanli, Zhang, Xiao-hua, Yamaguchi, Naohiro, Morad, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 44
container_title Cardiovascular research
container_volume 120
creator Xia, Yanli
Zhang, Xiao-hua
Yamaguchi, Naohiro
Morad, Martin
description Abstract Aims CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. Methods and results Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5–20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. Conclusion Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/cvr/cvad163
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10898933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvad163</oup_id><sourcerecordid>2883586901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-9da693314627227c98ad229f89b789205c6bea18636f3487f533f0c3aeede9aa3</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq2qCELg1HvlU4WEFvyxH_apqiK-JCQQKmdrYnuDq107tXdR8xv403ibFMGlB8se-5l3Zvwi9IWSM0okP9fPMS8wtOaf0Iw2VVVwVlaf0YwQIoqa1_wAHab0K4dV1ZT76IA3QhIi5Qy93AfnB9yPAwwu-ISdxw-bB4YXwE6LpfPG-RWONjkz2oRDi5_GHjzWEI0L_SbozZDvNYzJYm27buwgZr4PJgdTbk75C4PG9o922zpYBz9E0NO50GFcT-gR2muhS_Z4t8_R4-XFz8V1cXt3dbP4cVtoVpdDIQ3UknNa1qxhrNFSgGFMtkIu81iMVLpeWqAiD97yUjRtxXlLNAdrjZUAfI6-b3XX47K3RtuplU6to-shblQApz6-ePekVuFZUSKkyKWzwslOIYbf-V8G1bs0TQ_ehjEpJgSvRC0JzejpFtUxpBRt-1aHEjX5p7J_audfpr--b-2N_WdYBr5tgfxn_1V6BZEKqL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883586901</pqid></control><display><type>article</type><title>Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Xia, Yanli ; Zhang, Xiao-hua ; Yamaguchi, Naohiro ; Morad, Martin</creator><creatorcontrib>Xia, Yanli ; Zhang, Xiao-hua ; Yamaguchi, Naohiro ; Morad, Martin</creatorcontrib><description>Abstract Aims CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. Methods and results Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5–20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. Conclusion Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 0008-6363</identifier><identifier>ISSN: 1755-3245</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvad163</identifier><identifier>PMID: 37890099</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Caffeine - metabolism ; Caffeine - pharmacology ; Calcium - metabolism ; Editor's Choice ; Fura-2 - metabolism ; Humans ; Myocytes, Cardiac - metabolism ; Original ; Point Mutation ; Ryanodine Receptor Calcium Release Channel - genetics ; Ryanodine Receptor Calcium Release Channel - metabolism ; Sarcoplasmic Reticulum - metabolism</subject><ispartof>Cardiovascular research, 2024-02, Vol.120 (1), p.44-55</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-9da693314627227c98ad229f89b789205c6bea18636f3487f533f0c3aeede9aa3</cites><orcidid>0000-0002-9054-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37890099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yanli</creatorcontrib><creatorcontrib>Zhang, Xiao-hua</creatorcontrib><creatorcontrib>Yamaguchi, Naohiro</creatorcontrib><creatorcontrib>Morad, Martin</creatorcontrib><title>Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Abstract Aims CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. Methods and results Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5–20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. Conclusion Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes. Graphical Abstract Graphical Abstract</description><subject>Caffeine - metabolism</subject><subject>Caffeine - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Editor's Choice</subject><subject>Fura-2 - metabolism</subject><subject>Humans</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Original</subject><subject>Point Mutation</subject><subject>Ryanodine Receptor Calcium Release Channel - genetics</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><issn>0008-6363</issn><issn>1755-3245</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PGzEQhq2qCELg1HvlU4WEFvyxH_apqiK-JCQQKmdrYnuDq107tXdR8xv403ibFMGlB8se-5l3Zvwi9IWSM0okP9fPMS8wtOaf0Iw2VVVwVlaf0YwQIoqa1_wAHab0K4dV1ZT76IA3QhIi5Qy93AfnB9yPAwwu-ISdxw-bB4YXwE6LpfPG-RWONjkz2oRDi5_GHjzWEI0L_SbozZDvNYzJYm27buwgZr4PJgdTbk75C4PG9o922zpYBz9E0NO50GFcT-gR2muhS_Z4t8_R4-XFz8V1cXt3dbP4cVtoVpdDIQ3UknNa1qxhrNFSgGFMtkIu81iMVLpeWqAiD97yUjRtxXlLNAdrjZUAfI6-b3XX47K3RtuplU6to-shblQApz6-ePekVuFZUSKkyKWzwslOIYbf-V8G1bs0TQ_ehjEpJgSvRC0JzejpFtUxpBRt-1aHEjX5p7J_audfpr--b-2N_WdYBr5tgfxn_1V6BZEKqL8</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Xia, Yanli</creator><creator>Zhang, Xiao-hua</creator><creator>Yamaguchi, Naohiro</creator><creator>Morad, Martin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9054-0195</orcidid></search><sort><creationdate>20240227</creationdate><title>Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling</title><author>Xia, Yanli ; Zhang, Xiao-hua ; Yamaguchi, Naohiro ; Morad, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-9da693314627227c98ad229f89b789205c6bea18636f3487f533f0c3aeede9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Caffeine - metabolism</topic><topic>Caffeine - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Editor's Choice</topic><topic>Fura-2 - metabolism</topic><topic>Humans</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Original</topic><topic>Point Mutation</topic><topic>Ryanodine Receptor Calcium Release Channel - genetics</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yanli</creatorcontrib><creatorcontrib>Zhang, Xiao-hua</creatorcontrib><creatorcontrib>Yamaguchi, Naohiro</creatorcontrib><creatorcontrib>Morad, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yanli</au><au>Zhang, Xiao-hua</au><au>Yamaguchi, Naohiro</au><au>Morad, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2024-02-27</date><risdate>2024</risdate><volume>120</volume><issue>1</issue><spage>44</spage><epage>55</epage><pages>44-55</pages><issn>0008-6363</issn><issn>1755-3245</issn><eissn>1755-3245</eissn><abstract>Abstract Aims CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. Methods and results Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5–20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. Conclusion Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes. Graphical Abstract Graphical Abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37890099</pmid><doi>10.1093/cvr/cvad163</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9054-0195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2024-02, Vol.120 (1), p.44-55
issn 0008-6363
1755-3245
1755-3245
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10898933
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Caffeine - metabolism
Caffeine - pharmacology
Calcium - metabolism
Editor's Choice
Fura-2 - metabolism
Humans
Myocytes, Cardiac - metabolism
Original
Point Mutation
Ryanodine Receptor Calcium Release Channel - genetics
Ryanodine Receptor Calcium Release Channel - metabolism
Sarcoplasmic Reticulum - metabolism
title Point mutations in RyR2 Ca2+-binding residues of human cardiomyocytes cause cellular remodelling of cardiac excitation contraction-coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20mutations%20in%20RyR2%20Ca2+-binding%20residues%20of%20human%20cardiomyocytes%20cause%20cellular%20remodelling%20of%20cardiac%20excitation%20contraction-coupling&rft.jtitle=Cardiovascular%20research&rft.au=Xia,%20Yanli&rft.date=2024-02-27&rft.volume=120&rft.issue=1&rft.spage=44&rft.epage=55&rft.pages=44-55&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvad163&rft_dat=%3Cproquest_pubme%3E2883586901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883586901&rft_id=info:pmid/37890099&rft_oup_id=10.1093/cvr/cvad163&rfr_iscdi=true