Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2024-02, Vol.43 (3), p.362-390
Hauptverfasser: Zhang, Quanjiang, Li, Zhonggang, Li, Qiuxia, Trammell, Samuel AJ, Schmidt, Mark S, Pires, Karla Maria, Cai, Jinjin, Zhang, Yuan, Kenny, Helena, Boudina, Sihem, Brenner, Charles, Abel, E Dale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 3
container_start_page 362
container_title The EMBO journal
container_volume 43
creator Zhang, Quanjiang
Li, Zhonggang
Li, Qiuxia
Trammell, Samuel AJ
Schmidt, Mark S
Pires, Karla Maria
Cai, Jinjin
Zhang, Yuan
Kenny, Helena
Boudina, Sihem
Brenner, Charles
Abel, E Dale
description Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD + ) availability in cardiomyocytes. NAD + deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD + precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD + levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD + . Synopsis How autophagy safeguards cardiac structure and function to prevent heart failure remains unclear. This genetic work links a novel connection between deficient autophagic flux in cardiomyocytes to reduced availability of the cellular metabolite NAD + , suggesting novel tractable avenues for intervention. Depletion of autophagy-related protein 3 (ATG3) in cardiomyocytes causes cardiac dysfunction and early mortality in mice. ATG3 depletion reduces mitochondrial metabolism and biogenesis, preceding age-dependent cardiac dysfunction. Reduced autophagy leads to accumulation of SQSTM1, activation of NF-κB subunit RELA, and increased transcription of the NAD + metabolic enzyme NNMT. Increased NNMT catalyzes the competing conversion of NAD + precursor NAM to MeNAM, leading to NAD + deficiency. Autophagy induction prevents NNMT induction and NNMT inhibition or NMN supplementation restore cardiac and mitochondrial dysfunction when autophagy is defective. Deficient autophagy reduces NAD + availability in cardiomyocytes via a SQSTM1-NF-κB-NNMT axis, contributing to mitochondrial dysfunction and heart failure.
doi_str_mv 10.1038/s44318-023-00009-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921115486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-534434c5314e6b191932633458d28c284eec78ea5f93619379f25202fe52cd133</originalsourceid><addsrcrecordid>eNp9kUtP3DAUhS3UCqbAH2BReYlUhfr6kTgrNJo-QBq1G1ixsDyOMzFK7KmdFPj3dQmg6abeXEvnu8e-9yB0BuQCCJOfE-cMZEEoK0g-dfFwgBbAS1JQUol3e_cj9CGl-8wIWcEhOmKSAmUSFuhuFfwYQ49Di38sv3zCXRhsSKNOLuHNE9bTGHad3jqD2356xENopl6PNuHBjcF0wTfR6R5r32CjY-N0BidvRhf8CXrf6j7Z05d6jG6_fb1ZXRXrn9-vV8t1YTivxkKwPAc3ggG35QZqqBktGeNCNlQaKrm1ppJWi7ZmZRaruqWCEtpaQU0DjB2jy9l3N20G2xibJ9K92kU36PikgnbqX8W7Tm3DbwVE1hVwyA7nLw4x_JpsGtXgkrF9r70NU1K0pgAguCwzSmfUxJBStO3bO0DU31jUHIvKsajnWNRDbvq4_8O3ltccMsBmIGXJb21U92GKPm_tf7Z_ANbzmV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921115486</pqid></control><display><type>article</type><title>Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>SpringerOpen</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Zhang, Quanjiang ; Li, Zhonggang ; Li, Qiuxia ; Trammell, Samuel AJ ; Schmidt, Mark S ; Pires, Karla Maria ; Cai, Jinjin ; Zhang, Yuan ; Kenny, Helena ; Boudina, Sihem ; Brenner, Charles ; Abel, E Dale</creator><creatorcontrib>Zhang, Quanjiang ; Li, Zhonggang ; Li, Qiuxia ; Trammell, Samuel AJ ; Schmidt, Mark S ; Pires, Karla Maria ; Cai, Jinjin ; Zhang, Yuan ; Kenny, Helena ; Boudina, Sihem ; Brenner, Charles ; Abel, E Dale</creatorcontrib><description>Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD + ) availability in cardiomyocytes. NAD + deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD + precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD + levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD + . Synopsis How autophagy safeguards cardiac structure and function to prevent heart failure remains unclear. This genetic work links a novel connection between deficient autophagic flux in cardiomyocytes to reduced availability of the cellular metabolite NAD + , suggesting novel tractable avenues for intervention. Depletion of autophagy-related protein 3 (ATG3) in cardiomyocytes causes cardiac dysfunction and early mortality in mice. ATG3 depletion reduces mitochondrial metabolism and biogenesis, preceding age-dependent cardiac dysfunction. Reduced autophagy leads to accumulation of SQSTM1, activation of NF-κB subunit RELA, and increased transcription of the NAD + metabolic enzyme NNMT. Increased NNMT catalyzes the competing conversion of NAD + precursor NAM to MeNAM, leading to NAD + deficiency. Autophagy induction prevents NNMT induction and NNMT inhibition or NMN supplementation restore cardiac and mitochondrial dysfunction when autophagy is defective. Deficient autophagy reduces NAD + availability in cardiomyocytes via a SQSTM1-NF-κB-NNMT axis, contributing to mitochondrial dysfunction and heart failure.</description><identifier>ISSN: 1460-2075</identifier><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/s44318-023-00009-w</identifier><identifier>PMID: 38212381</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Autophagy ; Biomedical and Life Sciences ; EMBO04 ; EMBO07 ; EMBO21 ; Heart Failure ; Homeostasis ; Humans ; Life Sciences ; Mitochondrial Diseases ; NAD - metabolism ; NF-kappa B - metabolism ; Nicotinamide Mononucleotide ; Sequestosome-1 Protein - genetics</subject><ispartof>The EMBO journal, 2024-02, Vol.43 (3), p.362-390</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-534434c5314e6b191932633458d28c284eec78ea5f93619379f25202fe52cd133</citedby><cites>FETCH-LOGICAL-c447t-534434c5314e6b191932633458d28c284eec78ea5f93619379f25202fe52cd133</cites><orcidid>0000-0002-5941-4094 ; 0000-0002-4711-1109 ; 0000-0001-5290-0738 ; 0000-0002-5974-0279 ; 0000-0003-4593-4096 ; 0000-0002-4955-3226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s44318-023-00009-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s44318-023-00009-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38212381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Quanjiang</creatorcontrib><creatorcontrib>Li, Zhonggang</creatorcontrib><creatorcontrib>Li, Qiuxia</creatorcontrib><creatorcontrib>Trammell, Samuel AJ</creatorcontrib><creatorcontrib>Schmidt, Mark S</creatorcontrib><creatorcontrib>Pires, Karla Maria</creatorcontrib><creatorcontrib>Cai, Jinjin</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Kenny, Helena</creatorcontrib><creatorcontrib>Boudina, Sihem</creatorcontrib><creatorcontrib>Brenner, Charles</creatorcontrib><creatorcontrib>Abel, E Dale</creatorcontrib><title>Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD + ) availability in cardiomyocytes. NAD + deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD + precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD + levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD + . Synopsis How autophagy safeguards cardiac structure and function to prevent heart failure remains unclear. This genetic work links a novel connection between deficient autophagic flux in cardiomyocytes to reduced availability of the cellular metabolite NAD + , suggesting novel tractable avenues for intervention. Depletion of autophagy-related protein 3 (ATG3) in cardiomyocytes causes cardiac dysfunction and early mortality in mice. ATG3 depletion reduces mitochondrial metabolism and biogenesis, preceding age-dependent cardiac dysfunction. Reduced autophagy leads to accumulation of SQSTM1, activation of NF-κB subunit RELA, and increased transcription of the NAD + metabolic enzyme NNMT. Increased NNMT catalyzes the competing conversion of NAD + precursor NAM to MeNAM, leading to NAD + deficiency. Autophagy induction prevents NNMT induction and NNMT inhibition or NMN supplementation restore cardiac and mitochondrial dysfunction when autophagy is defective. Deficient autophagy reduces NAD + availability in cardiomyocytes via a SQSTM1-NF-κB-NNMT axis, contributing to mitochondrial dysfunction and heart failure.</description><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>EMBO04</subject><subject>EMBO07</subject><subject>EMBO21</subject><subject>Heart Failure</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mitochondrial Diseases</subject><subject>NAD - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>Nicotinamide Mononucleotide</subject><subject>Sequestosome-1 Protein - genetics</subject><issn>1460-2075</issn><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtP3DAUhS3UCqbAH2BReYlUhfr6kTgrNJo-QBq1G1ixsDyOMzFK7KmdFPj3dQmg6abeXEvnu8e-9yB0BuQCCJOfE-cMZEEoK0g-dfFwgBbAS1JQUol3e_cj9CGl-8wIWcEhOmKSAmUSFuhuFfwYQ49Di38sv3zCXRhsSKNOLuHNE9bTGHad3jqD2356xENopl6PNuHBjcF0wTfR6R5r32CjY-N0BidvRhf8CXrf6j7Z05d6jG6_fb1ZXRXrn9-vV8t1YTivxkKwPAc3ggG35QZqqBktGeNCNlQaKrm1ppJWi7ZmZRaruqWCEtpaQU0DjB2jy9l3N20G2xibJ9K92kU36PikgnbqX8W7Tm3DbwVE1hVwyA7nLw4x_JpsGtXgkrF9r70NU1K0pgAguCwzSmfUxJBStO3bO0DU31jUHIvKsajnWNRDbvq4_8O3ltccMsBmIGXJb21U92GKPm_tf7Z_ANbzmV4</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhang, Quanjiang</creator><creator>Li, Zhonggang</creator><creator>Li, Qiuxia</creator><creator>Trammell, Samuel AJ</creator><creator>Schmidt, Mark S</creator><creator>Pires, Karla Maria</creator><creator>Cai, Jinjin</creator><creator>Zhang, Yuan</creator><creator>Kenny, Helena</creator><creator>Boudina, Sihem</creator><creator>Brenner, Charles</creator><creator>Abel, E Dale</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5941-4094</orcidid><orcidid>https://orcid.org/0000-0002-4711-1109</orcidid><orcidid>https://orcid.org/0000-0001-5290-0738</orcidid><orcidid>https://orcid.org/0000-0002-5974-0279</orcidid><orcidid>https://orcid.org/0000-0003-4593-4096</orcidid><orcidid>https://orcid.org/0000-0002-4955-3226</orcidid></search><sort><creationdate>20240201</creationdate><title>Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function</title><author>Zhang, Quanjiang ; Li, Zhonggang ; Li, Qiuxia ; Trammell, Samuel AJ ; Schmidt, Mark S ; Pires, Karla Maria ; Cai, Jinjin ; Zhang, Yuan ; Kenny, Helena ; Boudina, Sihem ; Brenner, Charles ; Abel, E Dale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-534434c5314e6b191932633458d28c284eec78ea5f93619379f25202fe52cd133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>EMBO04</topic><topic>EMBO07</topic><topic>EMBO21</topic><topic>Heart Failure</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mitochondrial Diseases</topic><topic>NAD - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>Nicotinamide Mononucleotide</topic><topic>Sequestosome-1 Protein - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Quanjiang</creatorcontrib><creatorcontrib>Li, Zhonggang</creatorcontrib><creatorcontrib>Li, Qiuxia</creatorcontrib><creatorcontrib>Trammell, Samuel AJ</creatorcontrib><creatorcontrib>Schmidt, Mark S</creatorcontrib><creatorcontrib>Pires, Karla Maria</creatorcontrib><creatorcontrib>Cai, Jinjin</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Kenny, Helena</creatorcontrib><creatorcontrib>Boudina, Sihem</creatorcontrib><creatorcontrib>Brenner, Charles</creatorcontrib><creatorcontrib>Abel, E Dale</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Quanjiang</au><au>Li, Zhonggang</au><au>Li, Qiuxia</au><au>Trammell, Samuel AJ</au><au>Schmidt, Mark S</au><au>Pires, Karla Maria</au><au>Cai, Jinjin</au><au>Zhang, Yuan</au><au>Kenny, Helena</au><au>Boudina, Sihem</au><au>Brenner, Charles</au><au>Abel, E Dale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>362</spage><epage>390</epage><pages>362-390</pages><issn>1460-2075</issn><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD + ) availability in cardiomyocytes. NAD + deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD + precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD + levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD + . Synopsis How autophagy safeguards cardiac structure and function to prevent heart failure remains unclear. This genetic work links a novel connection between deficient autophagic flux in cardiomyocytes to reduced availability of the cellular metabolite NAD + , suggesting novel tractable avenues for intervention. Depletion of autophagy-related protein 3 (ATG3) in cardiomyocytes causes cardiac dysfunction and early mortality in mice. ATG3 depletion reduces mitochondrial metabolism and biogenesis, preceding age-dependent cardiac dysfunction. Reduced autophagy leads to accumulation of SQSTM1, activation of NF-κB subunit RELA, and increased transcription of the NAD + metabolic enzyme NNMT. Increased NNMT catalyzes the competing conversion of NAD + precursor NAM to MeNAM, leading to NAD + deficiency. Autophagy induction prevents NNMT induction and NNMT inhibition or NMN supplementation restore cardiac and mitochondrial dysfunction when autophagy is defective. Deficient autophagy reduces NAD + availability in cardiomyocytes via a SQSTM1-NF-κB-NNMT axis, contributing to mitochondrial dysfunction and heart failure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38212381</pmid><doi>10.1038/s44318-023-00009-w</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-5941-4094</orcidid><orcidid>https://orcid.org/0000-0002-4711-1109</orcidid><orcidid>https://orcid.org/0000-0001-5290-0738</orcidid><orcidid>https://orcid.org/0000-0002-5974-0279</orcidid><orcidid>https://orcid.org/0000-0003-4593-4096</orcidid><orcidid>https://orcid.org/0000-0002-4955-3226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1460-2075
ispartof The EMBO journal, 2024-02, Vol.43 (3), p.362-390
issn 1460-2075
0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897141
source Open Access: DOAJ - Directory of Open Access Journals; SpringerOpen; MEDLINE; EZB Electronic Journals Library
subjects Autophagy
Biomedical and Life Sciences
EMBO04
EMBO07
EMBO21
Heart Failure
Homeostasis
Humans
Life Sciences
Mitochondrial Diseases
NAD - metabolism
NF-kappa B - metabolism
Nicotinamide Mononucleotide
Sequestosome-1 Protein - genetics
title Control of NAD+ homeostasis by autophagic flux modulates mitochondrial and cardiac function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20NAD+%20homeostasis%20by%20autophagic%20flux%20modulates%20mitochondrial%20and%20cardiac%20function&rft.jtitle=The%20EMBO%20journal&rft.au=Zhang,%20Quanjiang&rft.date=2024-02-01&rft.volume=43&rft.issue=3&rft.spage=362&rft.epage=390&rft.pages=362-390&rft.issn=1460-2075&rft.eissn=1460-2075&rft_id=info:doi/10.1038/s44318-023-00009-w&rft_dat=%3Cproquest_pubme%3E2921115486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921115486&rft_id=info:pmid/38212381&rfr_iscdi=true