Translational applications of computational modelling for patients with cardiac arrhythmias
Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and soph...
Gespeichert in:
Veröffentlicht in: | Heart (British Cardiac Society) 2021-03, Vol.107 (6), p.456-461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 6 |
container_start_page | 456 |
container_title | Heart (British Cardiac Society) |
container_volume | 107 |
creator | Bifulco, Savannah F Akoum, Nazem Boyle, Patrick M |
description | Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy. |
doi_str_mv | 10.1136/heartjnl-2020-316854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483408075</sourcerecordid><originalsourceid>FETCH-LOGICAL-b472t-d0d71c1adc5d0a077374733ada219d5b6b000fb8f27f3155d62d2d8795c50ee03</originalsourceid><addsrcrecordid>eNqNUU1v1TAQtBAVLYV_gFAkLlxC19_OCaEKClIlLq1UiYPl2E7jpyQOdgLqv8evr-_xcUA9eb07M5rdQegVhncYU3HWe5OWzTTUBAjUFAvF2RN0gplQpYVvnpaacl4LoPIYPc95AwCsUeIZOqaUAmVSnaBvV8lMeTBLiJMZKjPPQ7D3v1zFrrJxnNdlPx2j88MQptuqi6maS9tPS65-hqWvrEkuGFuZlPq7pR-DyS_QUWeG7F8-vKfo-tPHq_PP9eXXiy_nHy7rlkmy1A6cxBYbZ7kDA1JSySSlxhmCG8db0RbjXas6IjuKOXeCOOKUbLjl4D3QU_R-pzuv7eidLaaSGfScwmjSnY4m6L8nU-j1bfyhMahGMMKLwtsHhRS_rz4vegzZll3N5OOaNWGKMlAgt9A3_0A3cU3lOltUQxQrRxcFxXYom2LOyXcHNxj0Nj69j09v49O7-Art9Z-bHEj7vArgbAdox81jJeE342D1v5RfbjS5aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492841356</pqid></control><display><type>article</type><title>Translational applications of computational modelling for patients with cardiac arrhythmias</title><source>PubMed Central</source><creator>Bifulco, Savannah F ; Akoum, Nazem ; Boyle, Patrick M</creator><creatorcontrib>Bifulco, Savannah F ; Akoum, Nazem ; Boyle, Patrick M</creatorcontrib><description>Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy.</description><identifier>ISSN: 1355-6037</identifier><identifier>EISSN: 1468-201X</identifier><identifier>DOI: 10.1136/heartjnl-2020-316854</identifier><identifier>PMID: 33303478</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Cardiovascular Society</publisher><subject>Ablation ; arrhythmias ; atrial fibrillation ; cardiac ; Cardiac arrhythmia ; computer simulation ; Geometry ; Localization ; magnetic resonance imaging ; Patients ; Review ; Scale models ; Simulation ; Sinuses ; tachycardia ; Veins & arteries ; ventricular</subject><ispartof>Heart (British Cardiac Society), 2021-03, Vol.107 (6), p.456-461</ispartof><rights>Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b472t-d0d71c1adc5d0a077374733ada219d5b6b000fb8f27f3155d62d2d8795c50ee03</citedby><cites>FETCH-LOGICAL-b472t-d0d71c1adc5d0a077374733ada219d5b6b000fb8f27f3155d62d2d8795c50ee03</cites><orcidid>0000-0001-9048-1239 ; 0000-0002-2001-6806 ; 0000-0001-6679-6716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896425/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896425/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33303478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bifulco, Savannah F</creatorcontrib><creatorcontrib>Akoum, Nazem</creatorcontrib><creatorcontrib>Boyle, Patrick M</creatorcontrib><title>Translational applications of computational modelling for patients with cardiac arrhythmias</title><title>Heart (British Cardiac Society)</title><addtitle>Heart</addtitle><addtitle>Heart</addtitle><description>Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy.</description><subject>Ablation</subject><subject>arrhythmias</subject><subject>atrial fibrillation</subject><subject>cardiac</subject><subject>Cardiac arrhythmia</subject><subject>computer simulation</subject><subject>Geometry</subject><subject>Localization</subject><subject>magnetic resonance imaging</subject><subject>Patients</subject><subject>Review</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Sinuses</subject><subject>tachycardia</subject><subject>Veins & arteries</subject><subject>ventricular</subject><issn>1355-6037</issn><issn>1468-201X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNUU1v1TAQtBAVLYV_gFAkLlxC19_OCaEKClIlLq1UiYPl2E7jpyQOdgLqv8evr-_xcUA9eb07M5rdQegVhncYU3HWe5OWzTTUBAjUFAvF2RN0gplQpYVvnpaacl4LoPIYPc95AwCsUeIZOqaUAmVSnaBvV8lMeTBLiJMZKjPPQ7D3v1zFrrJxnNdlPx2j88MQptuqi6maS9tPS65-hqWvrEkuGFuZlPq7pR-DyS_QUWeG7F8-vKfo-tPHq_PP9eXXiy_nHy7rlkmy1A6cxBYbZ7kDA1JSySSlxhmCG8db0RbjXas6IjuKOXeCOOKUbLjl4D3QU_R-pzuv7eidLaaSGfScwmjSnY4m6L8nU-j1bfyhMahGMMKLwtsHhRS_rz4vegzZll3N5OOaNWGKMlAgt9A3_0A3cU3lOltUQxQrRxcFxXYom2LOyXcHNxj0Nj69j09v49O7-Art9Z-bHEj7vArgbAdox81jJeE342D1v5RfbjS5aA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bifulco, Savannah F</creator><creator>Akoum, Nazem</creator><creator>Boyle, Patrick M</creator><general>BMJ Publishing Group Ltd and British Cardiovascular Society</general><general>BMJ Publishing Group LTD</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9048-1239</orcidid><orcidid>https://orcid.org/0000-0002-2001-6806</orcidid><orcidid>https://orcid.org/0000-0001-6679-6716</orcidid></search><sort><creationdate>20210301</creationdate><title>Translational applications of computational modelling for patients with cardiac arrhythmias</title><author>Bifulco, Savannah F ; Akoum, Nazem ; Boyle, Patrick M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b472t-d0d71c1adc5d0a077374733ada219d5b6b000fb8f27f3155d62d2d8795c50ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>arrhythmias</topic><topic>atrial fibrillation</topic><topic>cardiac</topic><topic>Cardiac arrhythmia</topic><topic>computer simulation</topic><topic>Geometry</topic><topic>Localization</topic><topic>magnetic resonance imaging</topic><topic>Patients</topic><topic>Review</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Sinuses</topic><topic>tachycardia</topic><topic>Veins & arteries</topic><topic>ventricular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bifulco, Savannah F</creatorcontrib><creatorcontrib>Akoum, Nazem</creatorcontrib><creatorcontrib>Boyle, Patrick M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heart (British Cardiac Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bifulco, Savannah F</au><au>Akoum, Nazem</au><au>Boyle, Patrick M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational applications of computational modelling for patients with cardiac arrhythmias</atitle><jtitle>Heart (British Cardiac Society)</jtitle><stitle>Heart</stitle><addtitle>Heart</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>107</volume><issue>6</issue><spage>456</spage><epage>461</epage><pages>456-461</pages><issn>1355-6037</issn><eissn>1468-201X</eissn><abstract>Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Cardiovascular Society</pub><pmid>33303478</pmid><doi>10.1136/heartjnl-2020-316854</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9048-1239</orcidid><orcidid>https://orcid.org/0000-0002-2001-6806</orcidid><orcidid>https://orcid.org/0000-0001-6679-6716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-6037 |
ispartof | Heart (British Cardiac Society), 2021-03, Vol.107 (6), p.456-461 |
issn | 1355-6037 1468-201X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896425 |
source | PubMed Central |
subjects | Ablation arrhythmias atrial fibrillation cardiac Cardiac arrhythmia computer simulation Geometry Localization magnetic resonance imaging Patients Review Scale models Simulation Sinuses tachycardia Veins & arteries ventricular |
title | Translational applications of computational modelling for patients with cardiac arrhythmias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20applications%20of%20computational%20modelling%20for%20patients%20with%20cardiac%20arrhythmias&rft.jtitle=Heart%20(British%20Cardiac%20Society)&rft.au=Bifulco,%20Savannah%20F&rft.date=2021-03-01&rft.volume=107&rft.issue=6&rft.spage=456&rft.epage=461&rft.pages=456-461&rft.issn=1355-6037&rft.eissn=1468-201X&rft_id=info:doi/10.1136/heartjnl-2020-316854&rft_dat=%3Cproquest_pubme%3E2483408075%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492841356&rft_id=info:pmid/33303478&rfr_iscdi=true |