A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression

Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (8), p.e2306132121
Hauptverfasser: Al Turkestani, Najla, Li, Tengfei, Bianchi, Jonas, Gurgel, Marcela, Prieto, Juan, Shah, Hina, Benavides, Erika, Soki, Fabiana, Mishina, Yuji, Fontana, Margherita, Rao, Arvind, Zhu, Hongtu, Cevidanes, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e2306132121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Al Turkestani, Najla
Li, Tengfei
Bianchi, Jonas
Gurgel, Marcela
Prieto, Juan
Shah, Hina
Benavides, Erika
Soki, Fabiana
Mishina, Yuji
Fontana, Margherita
Rao, Arvind
Zhu, Hongtu
Cevidanes, Lucia
description Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
doi_str_mv 10.1073/pnas.2306132121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</originalsourceid><addsrcrecordid>eNpdkUFP3TAQhK2qVXnQnnurIvXCJeD15iXOCSFEoRJSL9wtx97w_JTYqe0g9d9jCqWU0x7mm9GOhrEvwE-Ad3i6eJ1OBPIWUICAd2wDvIe6bXr-nm04F10tG9EcsMOU9pzzfiv5R3aAEpsWpNyw3XllwrxE2pFP7p6qRWdHPtdpIeNGZ6qiWWeyC76ag6WpGkOsMs1LiGHW3rphnXSs9sH5XIWUKeiYd9Fll4o33EVKqZg_sQ-jnhJ9fr5H7Pb75e3FdX3z8-rHxflNbbBrc0221bKDAeXIQSBIy7ueNGJnt4NotNQWkKQgY-zQAghqpByICyCDfYNH7OwpdlmHmawpVaKe1BLdrONvFbRT_yve7dRduFfAZb9F7EvC8XNCDL9WSlnNLhmaJu0prEmJXrTlJxCyoN_eoPuwRl_qFQq5FB3-oU6fKBNDSpHGl2-Aq8cV1eOK6t-KxfH1dYkX_u9s-ABd6ZxG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930827328</pqid></control><display><type>article</type><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</creator><creatorcontrib>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</creatorcontrib><description>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2306132121</identifier><identifier>PMID: 38346188</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arthritis ; Back pain ; Biological Sciences ; Chronic pain ; Customization ; Decision making ; Endothelium ; Headache ; Humans ; Jaw ; Leukocytes (neutrophilic) ; Low back pain ; Machine learning ; Matrix metalloproteinase ; Matrix metalloproteinases ; Metalloproteinase ; Nonuniformity ; Osteoarthritis ; Osteoarthritis - therapy ; Pain ; Patients ; Precision medicine ; Prediction models ; Predictions ; Prospective Studies ; Research Design ; Saliva ; Temporomandibular Joint ; Temporomandibular joint disorders ; Temporomandibular Joint Disorders - therapy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2306132121</ispartof><rights>Copyright National Academy of Sciences Feb 20, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</cites><orcidid>0000-0001-6142-3865 ; 0000-0002-6781-2690 ; 0000-0001-9786-2253 ; 0000-0003-2357-7534 ; 0000-0002-7650-3638 ; 0000-0002-6268-4204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Turkestani, Najla</creatorcontrib><creatorcontrib>Li, Tengfei</creatorcontrib><creatorcontrib>Bianchi, Jonas</creatorcontrib><creatorcontrib>Gurgel, Marcela</creatorcontrib><creatorcontrib>Prieto, Juan</creatorcontrib><creatorcontrib>Shah, Hina</creatorcontrib><creatorcontrib>Benavides, Erika</creatorcontrib><creatorcontrib>Soki, Fabiana</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Fontana, Margherita</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Cevidanes, Lucia</creatorcontrib><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</description><subject>Arthritis</subject><subject>Back pain</subject><subject>Biological Sciences</subject><subject>Chronic pain</subject><subject>Customization</subject><subject>Decision making</subject><subject>Endothelium</subject><subject>Headache</subject><subject>Humans</subject><subject>Jaw</subject><subject>Leukocytes (neutrophilic)</subject><subject>Low back pain</subject><subject>Machine learning</subject><subject>Matrix metalloproteinase</subject><subject>Matrix metalloproteinases</subject><subject>Metalloproteinase</subject><subject>Nonuniformity</subject><subject>Osteoarthritis</subject><subject>Osteoarthritis - therapy</subject><subject>Pain</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Prospective Studies</subject><subject>Research Design</subject><subject>Saliva</subject><subject>Temporomandibular Joint</subject><subject>Temporomandibular joint disorders</subject><subject>Temporomandibular Joint Disorders - therapy</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3TAQhK2qVXnQnnurIvXCJeD15iXOCSFEoRJSL9wtx97w_JTYqe0g9d9jCqWU0x7mm9GOhrEvwE-Ad3i6eJ1OBPIWUICAd2wDvIe6bXr-nm04F10tG9EcsMOU9pzzfiv5R3aAEpsWpNyw3XllwrxE2pFP7p6qRWdHPtdpIeNGZ6qiWWeyC76ag6WpGkOsMs1LiGHW3rphnXSs9sH5XIWUKeiYd9Fll4o33EVKqZg_sQ-jnhJ9fr5H7Pb75e3FdX3z8-rHxflNbbBrc0221bKDAeXIQSBIy7ueNGJnt4NotNQWkKQgY-zQAghqpByICyCDfYNH7OwpdlmHmawpVaKe1BLdrONvFbRT_yve7dRduFfAZb9F7EvC8XNCDL9WSlnNLhmaJu0prEmJXrTlJxCyoN_eoPuwRl_qFQq5FB3-oU6fKBNDSpHGl2-Aq8cV1eOK6t-KxfH1dYkX_u9s-ABd6ZxG</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Al Turkestani, Najla</creator><creator>Li, Tengfei</creator><creator>Bianchi, Jonas</creator><creator>Gurgel, Marcela</creator><creator>Prieto, Juan</creator><creator>Shah, Hina</creator><creator>Benavides, Erika</creator><creator>Soki, Fabiana</creator><creator>Mishina, Yuji</creator><creator>Fontana, Margherita</creator><creator>Rao, Arvind</creator><creator>Zhu, Hongtu</creator><creator>Cevidanes, Lucia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6142-3865</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><orcidid>https://orcid.org/0000-0001-9786-2253</orcidid><orcidid>https://orcid.org/0000-0003-2357-7534</orcidid><orcidid>https://orcid.org/0000-0002-7650-3638</orcidid><orcidid>https://orcid.org/0000-0002-6268-4204</orcidid></search><sort><creationdate>20240220</creationdate><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><author>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arthritis</topic><topic>Back pain</topic><topic>Biological Sciences</topic><topic>Chronic pain</topic><topic>Customization</topic><topic>Decision making</topic><topic>Endothelium</topic><topic>Headache</topic><topic>Humans</topic><topic>Jaw</topic><topic>Leukocytes (neutrophilic)</topic><topic>Low back pain</topic><topic>Machine learning</topic><topic>Matrix metalloproteinase</topic><topic>Matrix metalloproteinases</topic><topic>Metalloproteinase</topic><topic>Nonuniformity</topic><topic>Osteoarthritis</topic><topic>Osteoarthritis - therapy</topic><topic>Pain</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Prospective Studies</topic><topic>Research Design</topic><topic>Saliva</topic><topic>Temporomandibular Joint</topic><topic>Temporomandibular joint disorders</topic><topic>Temporomandibular Joint Disorders - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Turkestani, Najla</creatorcontrib><creatorcontrib>Li, Tengfei</creatorcontrib><creatorcontrib>Bianchi, Jonas</creatorcontrib><creatorcontrib>Gurgel, Marcela</creatorcontrib><creatorcontrib>Prieto, Juan</creatorcontrib><creatorcontrib>Shah, Hina</creatorcontrib><creatorcontrib>Benavides, Erika</creatorcontrib><creatorcontrib>Soki, Fabiana</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Fontana, Margherita</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Cevidanes, Lucia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Turkestani, Najla</au><au>Li, Tengfei</au><au>Bianchi, Jonas</au><au>Gurgel, Marcela</au><au>Prieto, Juan</au><au>Shah, Hina</au><au>Benavides, Erika</au><au>Soki, Fabiana</au><au>Mishina, Yuji</au><au>Fontana, Margherita</au><au>Rao, Arvind</au><au>Zhu, Hongtu</au><au>Cevidanes, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>121</volume><issue>8</issue><spage>e2306132121</spage><pages>e2306132121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38346188</pmid><doi>10.1073/pnas.2306132121</doi><orcidid>https://orcid.org/0000-0001-6142-3865</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><orcidid>https://orcid.org/0000-0001-9786-2253</orcidid><orcidid>https://orcid.org/0000-0003-2357-7534</orcidid><orcidid>https://orcid.org/0000-0002-7650-3638</orcidid><orcidid>https://orcid.org/0000-0002-6268-4204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2306132121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Arthritis
Back pain
Biological Sciences
Chronic pain
Customization
Decision making
Endothelium
Headache
Humans
Jaw
Leukocytes (neutrophilic)
Low back pain
Machine learning
Matrix metalloproteinase
Matrix metalloproteinases
Metalloproteinase
Nonuniformity
Osteoarthritis
Osteoarthritis - therapy
Pain
Patients
Precision medicine
Prediction models
Predictions
Prospective Studies
Research Design
Saliva
Temporomandibular Joint
Temporomandibular joint disorders
Temporomandibular Joint Disorders - therapy
title A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20patient-specific%20prediction%20model%20for%20temporomandibular%20joint%20osteoarthritis%20progression&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Al%20Turkestani,%20Najla&rft.date=2024-02-20&rft.volume=121&rft.issue=8&rft.spage=e2306132121&rft.pages=e2306132121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2306132121&rft_dat=%3Cproquest_pubme%3E2926079128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930827328&rft_id=info:pmid/38346188&rfr_iscdi=true