A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression
Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (8), p.e2306132121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e2306132121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Al Turkestani, Najla Li, Tengfei Bianchi, Jonas Gurgel, Marcela Prieto, Juan Shah, Hina Benavides, Erika Soki, Fabiana Mishina, Yuji Fontana, Margherita Rao, Arvind Zhu, Hongtu Cevidanes, Lucia |
description | Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare. |
doi_str_mv | 10.1073/pnas.2306132121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</originalsourceid><addsrcrecordid>eNpdkUFP3TAQhK2qVXnQnnurIvXCJeD15iXOCSFEoRJSL9wtx97w_JTYqe0g9d9jCqWU0x7mm9GOhrEvwE-Ad3i6eJ1OBPIWUICAd2wDvIe6bXr-nm04F10tG9EcsMOU9pzzfiv5R3aAEpsWpNyw3XllwrxE2pFP7p6qRWdHPtdpIeNGZ6qiWWeyC76ag6WpGkOsMs1LiGHW3rphnXSs9sH5XIWUKeiYd9Fll4o33EVKqZg_sQ-jnhJ9fr5H7Pb75e3FdX3z8-rHxflNbbBrc0221bKDAeXIQSBIy7ueNGJnt4NotNQWkKQgY-zQAghqpByICyCDfYNH7OwpdlmHmawpVaKe1BLdrONvFbRT_yve7dRduFfAZb9F7EvC8XNCDL9WSlnNLhmaJu0prEmJXrTlJxCyoN_eoPuwRl_qFQq5FB3-oU6fKBNDSpHGl2-Aq8cV1eOK6t-KxfH1dYkX_u9s-ABd6ZxG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930827328</pqid></control><display><type>article</type><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</creator><creatorcontrib>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</creatorcontrib><description>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2306132121</identifier><identifier>PMID: 38346188</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arthritis ; Back pain ; Biological Sciences ; Chronic pain ; Customization ; Decision making ; Endothelium ; Headache ; Humans ; Jaw ; Leukocytes (neutrophilic) ; Low back pain ; Machine learning ; Matrix metalloproteinase ; Matrix metalloproteinases ; Metalloproteinase ; Nonuniformity ; Osteoarthritis ; Osteoarthritis - therapy ; Pain ; Patients ; Precision medicine ; Prediction models ; Predictions ; Prospective Studies ; Research Design ; Saliva ; Temporomandibular Joint ; Temporomandibular joint disorders ; Temporomandibular Joint Disorders - therapy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2306132121</ispartof><rights>Copyright National Academy of Sciences Feb 20, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</cites><orcidid>0000-0001-6142-3865 ; 0000-0002-6781-2690 ; 0000-0001-9786-2253 ; 0000-0003-2357-7534 ; 0000-0002-7650-3638 ; 0000-0002-6268-4204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Turkestani, Najla</creatorcontrib><creatorcontrib>Li, Tengfei</creatorcontrib><creatorcontrib>Bianchi, Jonas</creatorcontrib><creatorcontrib>Gurgel, Marcela</creatorcontrib><creatorcontrib>Prieto, Juan</creatorcontrib><creatorcontrib>Shah, Hina</creatorcontrib><creatorcontrib>Benavides, Erika</creatorcontrib><creatorcontrib>Soki, Fabiana</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Fontana, Margherita</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Cevidanes, Lucia</creatorcontrib><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</description><subject>Arthritis</subject><subject>Back pain</subject><subject>Biological Sciences</subject><subject>Chronic pain</subject><subject>Customization</subject><subject>Decision making</subject><subject>Endothelium</subject><subject>Headache</subject><subject>Humans</subject><subject>Jaw</subject><subject>Leukocytes (neutrophilic)</subject><subject>Low back pain</subject><subject>Machine learning</subject><subject>Matrix metalloproteinase</subject><subject>Matrix metalloproteinases</subject><subject>Metalloproteinase</subject><subject>Nonuniformity</subject><subject>Osteoarthritis</subject><subject>Osteoarthritis - therapy</subject><subject>Pain</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Prospective Studies</subject><subject>Research Design</subject><subject>Saliva</subject><subject>Temporomandibular Joint</subject><subject>Temporomandibular joint disorders</subject><subject>Temporomandibular Joint Disorders - therapy</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3TAQhK2qVXnQnnurIvXCJeD15iXOCSFEoRJSL9wtx97w_JTYqe0g9d9jCqWU0x7mm9GOhrEvwE-Ad3i6eJ1OBPIWUICAd2wDvIe6bXr-nm04F10tG9EcsMOU9pzzfiv5R3aAEpsWpNyw3XllwrxE2pFP7p6qRWdHPtdpIeNGZ6qiWWeyC76ag6WpGkOsMs1LiGHW3rphnXSs9sH5XIWUKeiYd9Fll4o33EVKqZg_sQ-jnhJ9fr5H7Pb75e3FdX3z8-rHxflNbbBrc0221bKDAeXIQSBIy7ueNGJnt4NotNQWkKQgY-zQAghqpByICyCDfYNH7OwpdlmHmawpVaKe1BLdrONvFbRT_yve7dRduFfAZb9F7EvC8XNCDL9WSlnNLhmaJu0prEmJXrTlJxCyoN_eoPuwRl_qFQq5FB3-oU6fKBNDSpHGl2-Aq8cV1eOK6t-KxfH1dYkX_u9s-ABd6ZxG</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Al Turkestani, Najla</creator><creator>Li, Tengfei</creator><creator>Bianchi, Jonas</creator><creator>Gurgel, Marcela</creator><creator>Prieto, Juan</creator><creator>Shah, Hina</creator><creator>Benavides, Erika</creator><creator>Soki, Fabiana</creator><creator>Mishina, Yuji</creator><creator>Fontana, Margherita</creator><creator>Rao, Arvind</creator><creator>Zhu, Hongtu</creator><creator>Cevidanes, Lucia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6142-3865</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><orcidid>https://orcid.org/0000-0001-9786-2253</orcidid><orcidid>https://orcid.org/0000-0003-2357-7534</orcidid><orcidid>https://orcid.org/0000-0002-7650-3638</orcidid><orcidid>https://orcid.org/0000-0002-6268-4204</orcidid></search><sort><creationdate>20240220</creationdate><title>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</title><author>Al Turkestani, Najla ; Li, Tengfei ; Bianchi, Jonas ; Gurgel, Marcela ; Prieto, Juan ; Shah, Hina ; Benavides, Erika ; Soki, Fabiana ; Mishina, Yuji ; Fontana, Margherita ; Rao, Arvind ; Zhu, Hongtu ; Cevidanes, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ed6a871b38f012318d079ea337d5b24a8ad13e82eccdb6112e488be021ec3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arthritis</topic><topic>Back pain</topic><topic>Biological Sciences</topic><topic>Chronic pain</topic><topic>Customization</topic><topic>Decision making</topic><topic>Endothelium</topic><topic>Headache</topic><topic>Humans</topic><topic>Jaw</topic><topic>Leukocytes (neutrophilic)</topic><topic>Low back pain</topic><topic>Machine learning</topic><topic>Matrix metalloproteinase</topic><topic>Matrix metalloproteinases</topic><topic>Metalloproteinase</topic><topic>Nonuniformity</topic><topic>Osteoarthritis</topic><topic>Osteoarthritis - therapy</topic><topic>Pain</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Prospective Studies</topic><topic>Research Design</topic><topic>Saliva</topic><topic>Temporomandibular Joint</topic><topic>Temporomandibular joint disorders</topic><topic>Temporomandibular Joint Disorders - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Turkestani, Najla</creatorcontrib><creatorcontrib>Li, Tengfei</creatorcontrib><creatorcontrib>Bianchi, Jonas</creatorcontrib><creatorcontrib>Gurgel, Marcela</creatorcontrib><creatorcontrib>Prieto, Juan</creatorcontrib><creatorcontrib>Shah, Hina</creatorcontrib><creatorcontrib>Benavides, Erika</creatorcontrib><creatorcontrib>Soki, Fabiana</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Fontana, Margherita</creatorcontrib><creatorcontrib>Rao, Arvind</creatorcontrib><creatorcontrib>Zhu, Hongtu</creatorcontrib><creatorcontrib>Cevidanes, Lucia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Turkestani, Najla</au><au>Li, Tengfei</au><au>Bianchi, Jonas</au><au>Gurgel, Marcela</au><au>Prieto, Juan</au><au>Shah, Hina</au><au>Benavides, Erika</au><au>Soki, Fabiana</au><au>Mishina, Yuji</au><au>Fontana, Margherita</au><au>Rao, Arvind</au><au>Zhu, Hongtu</au><au>Cevidanes, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>121</volume><issue>8</issue><spage>e2306132121</spage><pages>e2306132121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38346188</pmid><doi>10.1073/pnas.2306132121</doi><orcidid>https://orcid.org/0000-0001-6142-3865</orcidid><orcidid>https://orcid.org/0000-0002-6781-2690</orcidid><orcidid>https://orcid.org/0000-0001-9786-2253</orcidid><orcidid>https://orcid.org/0000-0003-2357-7534</orcidid><orcidid>https://orcid.org/0000-0002-7650-3638</orcidid><orcidid>https://orcid.org/0000-0002-6268-4204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2306132121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895339 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Arthritis Back pain Biological Sciences Chronic pain Customization Decision making Endothelium Headache Humans Jaw Leukocytes (neutrophilic) Low back pain Machine learning Matrix metalloproteinase Matrix metalloproteinases Metalloproteinase Nonuniformity Osteoarthritis Osteoarthritis - therapy Pain Patients Precision medicine Prediction models Predictions Prospective Studies Research Design Saliva Temporomandibular Joint Temporomandibular joint disorders Temporomandibular Joint Disorders - therapy |
title | A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20patient-specific%20prediction%20model%20for%20temporomandibular%20joint%20osteoarthritis%20progression&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Al%20Turkestani,%20Najla&rft.date=2024-02-20&rft.volume=121&rft.issue=8&rft.spage=e2306132121&rft.pages=e2306132121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2306132121&rft_dat=%3Cproquest_pubme%3E2926079128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930827328&rft_id=info:pmid/38346188&rfr_iscdi=true |