Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries
Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we discl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (8), p.e2317796121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e2317796121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Liao, Xuelong Chen, Shan Chen, Jialei Li, Youzeng Wang, Wei Lu, Tiantian Chen, Zhuo Cao, Lixin Wang, Yaxin Huang, Rong Sun, Xiaoting Lv, Runyu Wang, Huan |
description | Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm
) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm
can induce the Zn
flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn
and direct the lateral diffusion, thus effectively avoiding the local Zn
accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm
over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g
and maintain a capacity of up to 12 mAh. |
doi_str_mv | 10.1073/pnas.2317796121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930827639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</originalsourceid><addsrcrecordid>eNpdkbtv1TAUhy0EopfCzIYisbCktR3HjwmhihakSgzAwmI58fG9rhI72E4R_PU43FIek1_f-XSOfwg9J_iMYNGdL8HkM9oRIRQnlDxAO4IVaTlT-CHaYUxFKxllJ-hJzjcYY9VL_BiddLJjnGKyQ_HjuiwJcvZh33wJzbJOt5D8D1N8DM03Xw5NOSSA1voZQq6XZmp8gFTa8chYXwvyr52ZGxdTM8WwbyfvYBPOUGrFYEqpWshP0SNnpgzP7tZT9Pny7aeLd-31h6v3F2-u25FRWlpmrVOdFWYUDEhP1SjqSUpux8H1jivrOBdjbwZmMHaqF4SApFZYWudiQ3eKXh-9yzrMYEcIJZlJL8nPJn3X0Xj970vwB72Pt5pgqXoqeDW8ujOk-HWFXPTs8wjTZALENWuqKMdCckEr-vI_9Cauqf7URnVYbjpVqfMjNaaYcwJ33w3BektTb2nqP2nWihd_D3HP_46v-wnYEZ5f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930827639</pqid></control><display><type>article</type><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</creator><creatorcontrib>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</creatorcontrib><description>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm
) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm
can induce the Zn
flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn
and direct the lateral diffusion, thus effectively avoiding the local Zn
accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm
over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g
and maintain a capacity of up to 12 mAh.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2317796121</identifier><identifier>PMID: 38346201</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Cations ; Crystallization ; Deposition ; Diversion dams ; Electrolytes ; Hydrogen evolution ; Lateral diffusion ; Normal distribution ; Physical Sciences ; Pollutant deposition ; Side reactions ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2317796121</ispartof><rights>Copyright National Academy of Sciences Feb 20, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</citedby><cites>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</cites><orcidid>0000-0002-0332-5260 ; 0000-0002-4931-8429 ; 0000-0001-8419-8402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895276/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895276/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Xuelong</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Chen, Jialei</creatorcontrib><creatorcontrib>Li, Youzeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Lu, Tiantian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Sun, Xiaoting</creatorcontrib><creatorcontrib>Lv, Runyu</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm
) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm
can induce the Zn
flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn
and direct the lateral diffusion, thus effectively avoiding the local Zn
accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm
over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g
and maintain a capacity of up to 12 mAh.</description><subject>Cations</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Diversion dams</subject><subject>Electrolytes</subject><subject>Hydrogen evolution</subject><subject>Lateral diffusion</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Pollutant deposition</subject><subject>Side reactions</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtv1TAUhy0EopfCzIYisbCktR3HjwmhihakSgzAwmI58fG9rhI72E4R_PU43FIek1_f-XSOfwg9J_iMYNGdL8HkM9oRIRQnlDxAO4IVaTlT-CHaYUxFKxllJ-hJzjcYY9VL_BiddLJjnGKyQ_HjuiwJcvZh33wJzbJOt5D8D1N8DM03Xw5NOSSA1voZQq6XZmp8gFTa8chYXwvyr52ZGxdTM8WwbyfvYBPOUGrFYEqpWshP0SNnpgzP7tZT9Pny7aeLd-31h6v3F2-u25FRWlpmrVOdFWYUDEhP1SjqSUpux8H1jivrOBdjbwZmMHaqF4SApFZYWudiQ3eKXh-9yzrMYEcIJZlJL8nPJn3X0Xj970vwB72Pt5pgqXoqeDW8ujOk-HWFXPTs8wjTZALENWuqKMdCckEr-vI_9Cauqf7URnVYbjpVqfMjNaaYcwJ33w3BektTb2nqP2nWihd_D3HP_46v-wnYEZ5f</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Liao, Xuelong</creator><creator>Chen, Shan</creator><creator>Chen, Jialei</creator><creator>Li, Youzeng</creator><creator>Wang, Wei</creator><creator>Lu, Tiantian</creator><creator>Chen, Zhuo</creator><creator>Cao, Lixin</creator><creator>Wang, Yaxin</creator><creator>Huang, Rong</creator><creator>Sun, Xiaoting</creator><creator>Lv, Runyu</creator><creator>Wang, Huan</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0332-5260</orcidid><orcidid>https://orcid.org/0000-0002-4931-8429</orcidid><orcidid>https://orcid.org/0000-0001-8419-8402</orcidid></search><sort><creationdate>20240220</creationdate><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><author>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Diversion dams</topic><topic>Electrolytes</topic><topic>Hydrogen evolution</topic><topic>Lateral diffusion</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Pollutant deposition</topic><topic>Side reactions</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xuelong</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Chen, Jialei</creatorcontrib><creatorcontrib>Li, Youzeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Lu, Tiantian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Sun, Xiaoting</creatorcontrib><creatorcontrib>Lv, Runyu</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xuelong</au><au>Chen, Shan</au><au>Chen, Jialei</au><au>Li, Youzeng</au><au>Wang, Wei</au><au>Lu, Tiantian</au><au>Chen, Zhuo</au><au>Cao, Lixin</au><au>Wang, Yaxin</au><au>Huang, Rong</au><au>Sun, Xiaoting</au><au>Lv, Runyu</au><au>Wang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>121</volume><issue>8</issue><spage>e2317796121</spage><pages>e2317796121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm
) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm
can induce the Zn
flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn
and direct the lateral diffusion, thus effectively avoiding the local Zn
accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm
over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g
and maintain a capacity of up to 12 mAh.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38346201</pmid><doi>10.1073/pnas.2317796121</doi><orcidid>https://orcid.org/0000-0002-0332-5260</orcidid><orcidid>https://orcid.org/0000-0002-4931-8429</orcidid><orcidid>https://orcid.org/0000-0001-8419-8402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2317796121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895276 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Cations Crystallization Deposition Diversion dams Electrolytes Hydrogen evolution Lateral diffusion Normal distribution Physical Sciences Pollutant deposition Side reactions Zinc |
title | Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20Zn%20pulverization%20with%20three-dimensional%20inert-cation%20diversion%20dam%20for%20long-life%20Zn%20metal%20batteries&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liao,%20Xuelong&rft.date=2024-02-20&rft.volume=121&rft.issue=8&rft.spage=e2317796121&rft.pages=e2317796121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2317796121&rft_dat=%3Cproquest_pubme%3E2930827639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930827639&rft_id=info:pmid/38346201&rfr_iscdi=true |