Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we discl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-02, Vol.121 (8), p.e2317796121
Hauptverfasser: Liao, Xuelong, Chen, Shan, Chen, Jialei, Li, Youzeng, Wang, Wei, Lu, Tiantian, Chen, Zhuo, Cao, Lixin, Wang, Yaxin, Huang, Rong, Sun, Xiaoting, Lv, Runyu, Wang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e2317796121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Liao, Xuelong
Chen, Shan
Chen, Jialei
Li, Youzeng
Wang, Wei
Lu, Tiantian
Chen, Zhuo
Cao, Lixin
Wang, Yaxin
Huang, Rong
Sun, Xiaoting
Lv, Runyu
Wang, Huan
description Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm ) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm can induce the Zn flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn and direct the lateral diffusion, thus effectively avoiding the local Zn accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g and maintain a capacity of up to 12 mAh.
doi_str_mv 10.1073/pnas.2317796121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930827639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</originalsourceid><addsrcrecordid>eNpdkbtv1TAUhy0EopfCzIYisbCktR3HjwmhihakSgzAwmI58fG9rhI72E4R_PU43FIek1_f-XSOfwg9J_iMYNGdL8HkM9oRIRQnlDxAO4IVaTlT-CHaYUxFKxllJ-hJzjcYY9VL_BiddLJjnGKyQ_HjuiwJcvZh33wJzbJOt5D8D1N8DM03Xw5NOSSA1voZQq6XZmp8gFTa8chYXwvyr52ZGxdTM8WwbyfvYBPOUGrFYEqpWshP0SNnpgzP7tZT9Pny7aeLd-31h6v3F2-u25FRWlpmrVOdFWYUDEhP1SjqSUpux8H1jivrOBdjbwZmMHaqF4SApFZYWudiQ3eKXh-9yzrMYEcIJZlJL8nPJn3X0Xj970vwB72Pt5pgqXoqeDW8ujOk-HWFXPTs8wjTZALENWuqKMdCckEr-vI_9Cauqf7URnVYbjpVqfMjNaaYcwJ33w3BektTb2nqP2nWihd_D3HP_46v-wnYEZ5f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930827639</pqid></control><display><type>article</type><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</creator><creatorcontrib>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</creatorcontrib><description>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm ) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm can induce the Zn flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn and direct the lateral diffusion, thus effectively avoiding the local Zn accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g and maintain a capacity of up to 12 mAh.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2317796121</identifier><identifier>PMID: 38346201</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Cations ; Crystallization ; Deposition ; Diversion dams ; Electrolytes ; Hydrogen evolution ; Lateral diffusion ; Normal distribution ; Physical Sciences ; Pollutant deposition ; Side reactions ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2317796121</ispartof><rights>Copyright National Academy of Sciences Feb 20, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</citedby><cites>FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</cites><orcidid>0000-0002-0332-5260 ; 0000-0002-4931-8429 ; 0000-0001-8419-8402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895276/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895276/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Xuelong</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Chen, Jialei</creatorcontrib><creatorcontrib>Li, Youzeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Lu, Tiantian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Sun, Xiaoting</creatorcontrib><creatorcontrib>Lv, Runyu</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm ) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm can induce the Zn flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn and direct the lateral diffusion, thus effectively avoiding the local Zn accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g and maintain a capacity of up to 12 mAh.</description><subject>Cations</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Diversion dams</subject><subject>Electrolytes</subject><subject>Hydrogen evolution</subject><subject>Lateral diffusion</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Pollutant deposition</subject><subject>Side reactions</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtv1TAUhy0EopfCzIYisbCktR3HjwmhihakSgzAwmI58fG9rhI72E4R_PU43FIek1_f-XSOfwg9J_iMYNGdL8HkM9oRIRQnlDxAO4IVaTlT-CHaYUxFKxllJ-hJzjcYY9VL_BiddLJjnGKyQ_HjuiwJcvZh33wJzbJOt5D8D1N8DM03Xw5NOSSA1voZQq6XZmp8gFTa8chYXwvyr52ZGxdTM8WwbyfvYBPOUGrFYEqpWshP0SNnpgzP7tZT9Pny7aeLd-31h6v3F2-u25FRWlpmrVOdFWYUDEhP1SjqSUpux8H1jivrOBdjbwZmMHaqF4SApFZYWudiQ3eKXh-9yzrMYEcIJZlJL8nPJn3X0Xj970vwB72Pt5pgqXoqeDW8ujOk-HWFXPTs8wjTZALENWuqKMdCckEr-vI_9Cauqf7URnVYbjpVqfMjNaaYcwJ33w3BektTb2nqP2nWihd_D3HP_46v-wnYEZ5f</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Liao, Xuelong</creator><creator>Chen, Shan</creator><creator>Chen, Jialei</creator><creator>Li, Youzeng</creator><creator>Wang, Wei</creator><creator>Lu, Tiantian</creator><creator>Chen, Zhuo</creator><creator>Cao, Lixin</creator><creator>Wang, Yaxin</creator><creator>Huang, Rong</creator><creator>Sun, Xiaoting</creator><creator>Lv, Runyu</creator><creator>Wang, Huan</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0332-5260</orcidid><orcidid>https://orcid.org/0000-0002-4931-8429</orcidid><orcidid>https://orcid.org/0000-0001-8419-8402</orcidid></search><sort><creationdate>20240220</creationdate><title>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</title><author>Liao, Xuelong ; Chen, Shan ; Chen, Jialei ; Li, Youzeng ; Wang, Wei ; Lu, Tiantian ; Chen, Zhuo ; Cao, Lixin ; Wang, Yaxin ; Huang, Rong ; Sun, Xiaoting ; Lv, Runyu ; Wang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4ddf93d7ac74e1529c73d7886dcbf5f69df667c5ab4a00f95711e82d7d26204b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Diversion dams</topic><topic>Electrolytes</topic><topic>Hydrogen evolution</topic><topic>Lateral diffusion</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Pollutant deposition</topic><topic>Side reactions</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xuelong</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Chen, Jialei</creatorcontrib><creatorcontrib>Li, Youzeng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Lu, Tiantian</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Cao, Lixin</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Sun, Xiaoting</creatorcontrib><creatorcontrib>Lv, Runyu</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xuelong</au><au>Chen, Shan</au><au>Chen, Jialei</au><au>Li, Youzeng</au><au>Wang, Wei</au><au>Lu, Tiantian</au><au>Chen, Zhuo</au><au>Cao, Lixin</au><au>Wang, Yaxin</au><au>Huang, Rong</au><au>Sun, Xiaoting</au><au>Lv, Runyu</au><au>Wang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>121</volume><issue>8</issue><spage>e2317796121</spage><pages>e2317796121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm ) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm can induce the Zn flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn and direct the lateral diffusion, thus effectively avoiding the local Zn accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g and maintain a capacity of up to 12 mAh.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38346201</pmid><doi>10.1073/pnas.2317796121</doi><orcidid>https://orcid.org/0000-0002-0332-5260</orcidid><orcidid>https://orcid.org/0000-0002-4931-8429</orcidid><orcidid>https://orcid.org/0000-0001-8419-8402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-02, Vol.121 (8), p.e2317796121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10895276
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Cations
Crystallization
Deposition
Diversion dams
Electrolytes
Hydrogen evolution
Lateral diffusion
Normal distribution
Physical Sciences
Pollutant deposition
Side reactions
Zinc
title Suppressing Zn pulverization with three-dimensional inert-cation diversion dam for long-life Zn metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20Zn%20pulverization%20with%20three-dimensional%20inert-cation%20diversion%20dam%20for%20long-life%20Zn%20metal%20batteries&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liao,%20Xuelong&rft.date=2024-02-20&rft.volume=121&rft.issue=8&rft.spage=e2317796121&rft.pages=e2317796121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2317796121&rft_dat=%3Cproquest_pubme%3E2930827639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930827639&rft_id=info:pmid/38346201&rfr_iscdi=true