An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance

Summary Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2024-03, Vol.22 (3), p.602-616
Hauptverfasser: Gallas, Niels, Li, Xiaoxu, Roepenack‐Lahaye, Edda, Schandry, Niklas, Jiang, Yuxin, Wu, Dousheng, Lahaye, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue 3
container_start_page 602
container_title Plant biotechnology journal
container_volume 22
creator Gallas, Niels
Li, Xiaoxu
Roepenack‐Lahaye, Edda
Schandry, Niklas
Jiang, Yuxin
Wu, Dousheng
Lahaye, Thomas
description Summary Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator‐like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17‐nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11‐EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11‐EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC‐dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL‐binding motif Brg11‐EBE mediates RipTAL‐dependent transcription of the executor‐type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL‐delivering R. solanacearum strains. Our results suggest that cell death‐inducing executor‐type R genes, preceded by the RipTAL‐binding motif Brg11‐EBE, could be used to genetically engineer broad‐spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.
doi_str_mv 10.1111/pbi.14208
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10893940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931152606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4448-49bc9da0ca86233e3c4d8d5e1dafc096633f62b0a153416d7e645cae212046413</originalsourceid><addsrcrecordid>eNp1kstu1DAUhiMEoqWw4AWQJTawmNa3OMkKDVUplUYCobK2TuyT1iWJg-20ml0fgXfhjXiSejplBEh44evn__zHPkXxktFDltvR1LpDJjmtHxX7TKpqUamSP97NpdwrnsV4RSlnqlRPiz1R1RVtqnK_-LkcCYzG4ZiIcfHX7Q_scdisEoQLTGhJuyZfoI_Jjw5I9D2MYBDCPJDz5eok3-jdNyTYdWiSD5F0YFzvEiSMJF0isXiNvZ_uRX1HgEzBDz5hICnAlBHIof3c29yPXd5ugwebdeOUFTdxblyfSMDoYspe8XnxpMuG8MXDeFB8_XByfvxxsfp0ena8XC2MlLJeyKY1jQVqoFZcCBRG2tqWyCx0hjZKCdEp3lJgpZBM2QqVLA0gZ5xKJZk4KN5tdae5HdCanECAXk_BDRDW2oPTf5-M7lJf-GvNaN2IRtKs8OZBIfjvM8akBxcN9vkN0c9R87pmXFZSNRl9_Q965ecw5vw0bwRjJVdUZertljLBxxiw27lhVG9qQeda0Pe1kNlXf9rfkb8_PwNHWyC_L67_r6Q_vz_bSt4BXCrFVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931152606</pqid></control><display><type>article</type><title>An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance</title><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gallas, Niels ; Li, Xiaoxu ; Roepenack‐Lahaye, Edda ; Schandry, Niklas ; Jiang, Yuxin ; Wu, Dousheng ; Lahaye, Thomas</creator><creatorcontrib>Gallas, Niels ; Li, Xiaoxu ; Roepenack‐Lahaye, Edda ; Schandry, Niklas ; Jiang, Yuxin ; Wu, Dousheng ; Lahaye, Thomas</creatorcontrib><description>Summary Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator‐like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17‐nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11‐EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11‐EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC‐dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL‐binding motif Brg11‐EBE mediates RipTAL‐dependent transcription of the executor‐type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL‐delivering R. solanacearum strains. Our results suggest that cell death‐inducing executor‐type R genes, preceded by the RipTAL‐binding motif Brg11‐EBE, could be used to genetically engineer broad‐spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14208</identifier><identifier>PMID: 37870975</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Arginine decarboxylase ; Bacteria ; Binding ; Cell death ; Continental drift ; Effectors ; executor type resistance (R) gene ; Genes ; Genetic engineering ; Metabolites ; Nucleotides ; Pathogens ; Plant bacterial diseases ; Proteins ; Ralstonia injected proteins with similarity to transcription activator‐like proteins ; Ralstonia solanacearum ; Ralstonia solanacearum species complex ; RNA polymerase ; Strains (organisms) ; Tobacco ; transcription activator‐like effector ; Transgenic plants ; Wilt</subject><ispartof>Plant biotechnology journal, 2024-03, Vol.22 (3), p.602-616</ispartof><rights>2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4448-49bc9da0ca86233e3c4d8d5e1dafc096633f62b0a153416d7e645cae212046413</citedby><cites>FETCH-LOGICAL-c4448-49bc9da0ca86233e3c4d8d5e1dafc096633f62b0a153416d7e645cae212046413</cites><orcidid>0000-0003-0375-7503 ; 0000-0002-3778-3964 ; 0000-0001-5257-336X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14208$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14208$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37870975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallas, Niels</creatorcontrib><creatorcontrib>Li, Xiaoxu</creatorcontrib><creatorcontrib>Roepenack‐Lahaye, Edda</creatorcontrib><creatorcontrib>Schandry, Niklas</creatorcontrib><creatorcontrib>Jiang, Yuxin</creatorcontrib><creatorcontrib>Wu, Dousheng</creatorcontrib><creatorcontrib>Lahaye, Thomas</creatorcontrib><title>An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator‐like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17‐nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11‐EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11‐EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC‐dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL‐binding motif Brg11‐EBE mediates RipTAL‐dependent transcription of the executor‐type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL‐delivering R. solanacearum strains. Our results suggest that cell death‐inducing executor‐type R genes, preceded by the RipTAL‐binding motif Brg11‐EBE, could be used to genetically engineer broad‐spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.</description><subject>Arginine decarboxylase</subject><subject>Bacteria</subject><subject>Binding</subject><subject>Cell death</subject><subject>Continental drift</subject><subject>Effectors</subject><subject>executor type resistance (R) gene</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Metabolites</subject><subject>Nucleotides</subject><subject>Pathogens</subject><subject>Plant bacterial diseases</subject><subject>Proteins</subject><subject>Ralstonia injected proteins with similarity to transcription activator‐like proteins</subject><subject>Ralstonia solanacearum</subject><subject>Ralstonia solanacearum species complex</subject><subject>RNA polymerase</subject><subject>Strains (organisms)</subject><subject>Tobacco</subject><subject>transcription activator‐like effector</subject><subject>Transgenic plants</subject><subject>Wilt</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kstu1DAUhiMEoqWw4AWQJTawmNa3OMkKDVUplUYCobK2TuyT1iWJg-20ml0fgXfhjXiSejplBEh44evn__zHPkXxktFDltvR1LpDJjmtHxX7TKpqUamSP97NpdwrnsV4RSlnqlRPiz1R1RVtqnK_-LkcCYzG4ZiIcfHX7Q_scdisEoQLTGhJuyZfoI_Jjw5I9D2MYBDCPJDz5eok3-jdNyTYdWiSD5F0YFzvEiSMJF0isXiNvZ_uRX1HgEzBDz5hICnAlBHIof3c29yPXd5ugwebdeOUFTdxblyfSMDoYspe8XnxpMuG8MXDeFB8_XByfvxxsfp0ena8XC2MlLJeyKY1jQVqoFZcCBRG2tqWyCx0hjZKCdEp3lJgpZBM2QqVLA0gZ5xKJZk4KN5tdae5HdCanECAXk_BDRDW2oPTf5-M7lJf-GvNaN2IRtKs8OZBIfjvM8akBxcN9vkN0c9R87pmXFZSNRl9_Q965ecw5vw0bwRjJVdUZertljLBxxiw27lhVG9qQeda0Pe1kNlXf9rfkb8_PwNHWyC_L67_r6Q_vz_bSt4BXCrFVA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Gallas, Niels</creator><creator>Li, Xiaoxu</creator><creator>Roepenack‐Lahaye, Edda</creator><creator>Schandry, Niklas</creator><creator>Jiang, Yuxin</creator><creator>Wu, Dousheng</creator><creator>Lahaye, Thomas</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0375-7503</orcidid><orcidid>https://orcid.org/0000-0002-3778-3964</orcidid><orcidid>https://orcid.org/0000-0001-5257-336X</orcidid></search><sort><creationdate>202403</creationdate><title>An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance</title><author>Gallas, Niels ; Li, Xiaoxu ; Roepenack‐Lahaye, Edda ; Schandry, Niklas ; Jiang, Yuxin ; Wu, Dousheng ; Lahaye, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4448-49bc9da0ca86233e3c4d8d5e1dafc096633f62b0a153416d7e645cae212046413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arginine decarboxylase</topic><topic>Bacteria</topic><topic>Binding</topic><topic>Cell death</topic><topic>Continental drift</topic><topic>Effectors</topic><topic>executor type resistance (R) gene</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Metabolites</topic><topic>Nucleotides</topic><topic>Pathogens</topic><topic>Plant bacterial diseases</topic><topic>Proteins</topic><topic>Ralstonia injected proteins with similarity to transcription activator‐like proteins</topic><topic>Ralstonia solanacearum</topic><topic>Ralstonia solanacearum species complex</topic><topic>RNA polymerase</topic><topic>Strains (organisms)</topic><topic>Tobacco</topic><topic>transcription activator‐like effector</topic><topic>Transgenic plants</topic><topic>Wilt</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallas, Niels</creatorcontrib><creatorcontrib>Li, Xiaoxu</creatorcontrib><creatorcontrib>Roepenack‐Lahaye, Edda</creatorcontrib><creatorcontrib>Schandry, Niklas</creatorcontrib><creatorcontrib>Jiang, Yuxin</creatorcontrib><creatorcontrib>Wu, Dousheng</creatorcontrib><creatorcontrib>Lahaye, Thomas</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallas, Niels</au><au>Li, Xiaoxu</au><au>Roepenack‐Lahaye, Edda</au><au>Schandry, Niklas</au><au>Jiang, Yuxin</au><au>Wu, Dousheng</au><au>Lahaye, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-03</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><spage>602</spage><epage>616</epage><pages>602-616</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator‐like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17‐nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11‐EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11‐EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC‐dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL‐binding motif Brg11‐EBE mediates RipTAL‐dependent transcription of the executor‐type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL‐delivering R. solanacearum strains. Our results suggest that cell death‐inducing executor‐type R genes, preceded by the RipTAL‐binding motif Brg11‐EBE, could be used to genetically engineer broad‐spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37870975</pmid><doi>10.1111/pbi.14208</doi><tpages>616</tpages><orcidid>https://orcid.org/0000-0003-0375-7503</orcidid><orcidid>https://orcid.org/0000-0002-3778-3964</orcidid><orcidid>https://orcid.org/0000-0001-5257-336X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2024-03, Vol.22 (3), p.602-616
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10893940
source Wiley Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Arginine decarboxylase
Bacteria
Binding
Cell death
Continental drift
Effectors
executor type resistance (R) gene
Genes
Genetic engineering
Metabolites
Nucleotides
Pathogens
Plant bacterial diseases
Proteins
Ralstonia injected proteins with similarity to transcription activator‐like proteins
Ralstonia solanacearum
Ralstonia solanacearum species complex
RNA polymerase
Strains (organisms)
Tobacco
transcription activator‐like effector
Transgenic plants
Wilt
title An ancient cis‐element targeted by Ralstonia solanacearum TALE‐like effectors facilitates the development of a promoter trap that could confer broad‐spectrum wilt resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ancient%20cis%E2%80%90element%20targeted%20by%20Ralstonia%20solanacearum%20TALE%E2%80%90like%20effectors%20facilitates%20the%20development%20of%20a%20promoter%20trap%20that%20could%20confer%20broad%E2%80%90spectrum%20wilt%20resistance&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Gallas,%20Niels&rft.date=2024-03&rft.volume=22&rft.issue=3&rft.spage=602&rft.epage=616&rft.pages=602-616&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14208&rft_dat=%3Cproquest_pubme%3E2931152606%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931152606&rft_id=info:pmid/37870975&rfr_iscdi=true