Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data

Purpose Standardized uptake values (SUVs) derived from 18 F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2024-03, Vol.19 (3), p.581-590
Hauptverfasser: Alam, Md Ashraful, Hanaoka, Shouhei, Nomura, Yukihiro, Kikuchi, Tomohiro, Nakao, Takahiro, Takenaga, Tomomi, Hayashi, Naoto, Yoshikawa, Takeharu, Abe, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 3
container_start_page 581
container_title International journal for computer assisted radiology and surgery
container_volume 19
creator Alam, Md Ashraful
Hanaoka, Shouhei
Nomura, Yukihiro
Kikuchi, Tomohiro
Nakao, Takahiro
Takenaga, Tomomi
Hayashi, Naoto
Yoshikawa, Takeharu
Abe, Osamu
description Purpose Standardized uptake values (SUVs) derived from 18 F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV. Methods The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demographic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation formula. We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors and compared them to the ROC curve of normal SUV. Results A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level, triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation. Conclusion The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption by tumors in the liver.
doi_str_mv 10.1007/s11548-023-03044-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928956625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f333c04e4323c63d375341e3ee5838b3f47b3b43a44b76729ce91e4c2643fb0f3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEoqXwBzggS1y4BGyP4zgnhEq3VKoEh3K2nGSydUnsxXZWlHv_dx1SSuHAySPP997M6BXFS0bfMkrrd5GxSqiScigpUCFK8ag4ZEqyUgrePH5QHxTPYryiVFQ1VE-LA1BMUcnZYXFzNu2C32NPbI8u2cF2JlnviB9ImicfIrGOMLUpNx9Pyy8nFwR_mMm6FWqvifNhMqP9ad2WpEskMRnXm9CTeZfMN1zUy_do9xhIa2KetAhH73uSMCbSm2SeF08GM0Z8cfceFV83JxfHn8rzz6dnxx_Oy05wmcoBADoqUACHTkIPdQWCISBWClQLg6hbaAUYIdpa1rzpsGEoOi4FDC0d4Kh4v_ru5nbCvssXBzPqXbCTCdfaG6v_7jh7qbd-rxlVikkhs8ObO4fgv895fz3Z2OE4God-jpo3XDWVlLzK6Ot_0Cs_B5fvW6hmoajKFF-pLvgYAw732zCql5j1GrPOMetfMWuRRa8e3nEv-Z1rBmAFYm65LYY_s_9jewtaHbOp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929956608</pqid></control><display><type>article</type><title>Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alam, Md Ashraful ; Hanaoka, Shouhei ; Nomura, Yukihiro ; Kikuchi, Tomohiro ; Nakao, Takahiro ; Takenaga, Tomomi ; Hayashi, Naoto ; Yoshikawa, Takeharu ; Abe, Osamu</creator><creatorcontrib>Alam, Md Ashraful ; Hanaoka, Shouhei ; Nomura, Yukihiro ; Kikuchi, Tomohiro ; Nakao, Takahiro ; Takenaga, Tomomi ; Hayashi, Naoto ; Yoshikawa, Takeharu ; Abe, Osamu</creatorcontrib><description>Purpose Standardized uptake values (SUVs) derived from 18 F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV. Methods The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demographic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation formula. We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors and compared them to the ROC curve of normal SUV. Results A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level, triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation. Conclusion The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption by tumors in the liver.</description><identifier>ISSN: 1861-6429</identifier><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-023-03044-4</identifier><identifier>PMID: 38180621</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abnormalities ; Alanine ; Anomalies ; Blood ; Body size ; Cholinesterase ; Computed tomography ; Computer Imaging ; Computer Science ; Creatinine ; Emission analysis ; Fluorine isotopes ; Glucose ; Health Informatics ; Imaging ; Liver ; Mean ; Medicine ; Medicine &amp; Public Health ; Original ; Original Article ; Parameter identification ; Pattern Recognition and Graphics ; Positron emission ; Radiology ; Standard deviation ; Standard scores ; Statistical analysis ; Surgery ; Tomography ; Transaminases ; Triglycerides ; Tumors ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2024-03, Vol.19 (3), p.581-590</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-f333c04e4323c63d375341e3ee5838b3f47b3b43a44b76729ce91e4c2643fb0f3</cites><orcidid>0000-0003-2626-0751 ; 0000-0001-7198-1588 ; 0000-0002-4222-4569 ; 0000-0001-9498-7501 ; 0000-0002-7562-477X ; 0000-0002-7496-1651 ; 0000-0002-1924-5468 ; 0000-0002-1180-2629 ; 0000-0001-6471-9936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-023-03044-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-023-03044-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38180621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Md Ashraful</creatorcontrib><creatorcontrib>Hanaoka, Shouhei</creatorcontrib><creatorcontrib>Nomura, Yukihiro</creatorcontrib><creatorcontrib>Kikuchi, Tomohiro</creatorcontrib><creatorcontrib>Nakao, Takahiro</creatorcontrib><creatorcontrib>Takenaga, Tomomi</creatorcontrib><creatorcontrib>Hayashi, Naoto</creatorcontrib><creatorcontrib>Yoshikawa, Takeharu</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><title>Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Standardized uptake values (SUVs) derived from 18 F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV. Methods The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demographic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation formula. We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors and compared them to the ROC curve of normal SUV. Results A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level, triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation. Conclusion The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption by tumors in the liver.</description><subject>Abnormalities</subject><subject>Alanine</subject><subject>Anomalies</subject><subject>Blood</subject><subject>Body size</subject><subject>Cholinesterase</subject><subject>Computed tomography</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Creatinine</subject><subject>Emission analysis</subject><subject>Fluorine isotopes</subject><subject>Glucose</subject><subject>Health Informatics</subject><subject>Imaging</subject><subject>Liver</subject><subject>Mean</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Pattern Recognition and Graphics</subject><subject>Positron emission</subject><subject>Radiology</subject><subject>Standard deviation</subject><subject>Standard scores</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Tomography</subject><subject>Transaminases</subject><subject>Triglycerides</subject><subject>Tumors</subject><subject>Vision</subject><issn>1861-6429</issn><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUFv1DAQhSMEoqXwBzggS1y4BGyP4zgnhEq3VKoEh3K2nGSydUnsxXZWlHv_dx1SSuHAySPP997M6BXFS0bfMkrrd5GxSqiScigpUCFK8ag4ZEqyUgrePH5QHxTPYryiVFQ1VE-LA1BMUcnZYXFzNu2C32NPbI8u2cF2JlnviB9ImicfIrGOMLUpNx9Pyy8nFwR_mMm6FWqvifNhMqP9ad2WpEskMRnXm9CTeZfMN1zUy_do9xhIa2KetAhH73uSMCbSm2SeF08GM0Z8cfceFV83JxfHn8rzz6dnxx_Oy05wmcoBADoqUACHTkIPdQWCISBWClQLg6hbaAUYIdpa1rzpsGEoOi4FDC0d4Kh4v_ru5nbCvssXBzPqXbCTCdfaG6v_7jh7qbd-rxlVikkhs8ObO4fgv895fz3Z2OE4God-jpo3XDWVlLzK6Ot_0Cs_B5fvW6hmoajKFF-pLvgYAw732zCql5j1GrPOMetfMWuRRa8e3nEv-Z1rBmAFYm65LYY_s_9jewtaHbOp</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Alam, Md Ashraful</creator><creator>Hanaoka, Shouhei</creator><creator>Nomura, Yukihiro</creator><creator>Kikuchi, Tomohiro</creator><creator>Nakao, Takahiro</creator><creator>Takenaga, Tomomi</creator><creator>Hayashi, Naoto</creator><creator>Yoshikawa, Takeharu</creator><creator>Abe, Osamu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2626-0751</orcidid><orcidid>https://orcid.org/0000-0001-7198-1588</orcidid><orcidid>https://orcid.org/0000-0002-4222-4569</orcidid><orcidid>https://orcid.org/0000-0001-9498-7501</orcidid><orcidid>https://orcid.org/0000-0002-7562-477X</orcidid><orcidid>https://orcid.org/0000-0002-7496-1651</orcidid><orcidid>https://orcid.org/0000-0002-1924-5468</orcidid><orcidid>https://orcid.org/0000-0002-1180-2629</orcidid><orcidid>https://orcid.org/0000-0001-6471-9936</orcidid></search><sort><creationdate>20240301</creationdate><title>Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data</title><author>Alam, Md Ashraful ; Hanaoka, Shouhei ; Nomura, Yukihiro ; Kikuchi, Tomohiro ; Nakao, Takahiro ; Takenaga, Tomomi ; Hayashi, Naoto ; Yoshikawa, Takeharu ; Abe, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f333c04e4323c63d375341e3ee5838b3f47b3b43a44b76729ce91e4c2643fb0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Alanine</topic><topic>Anomalies</topic><topic>Blood</topic><topic>Body size</topic><topic>Cholinesterase</topic><topic>Computed tomography</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Creatinine</topic><topic>Emission analysis</topic><topic>Fluorine isotopes</topic><topic>Glucose</topic><topic>Health Informatics</topic><topic>Imaging</topic><topic>Liver</topic><topic>Mean</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Pattern Recognition and Graphics</topic><topic>Positron emission</topic><topic>Radiology</topic><topic>Standard deviation</topic><topic>Standard scores</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Tomography</topic><topic>Transaminases</topic><topic>Triglycerides</topic><topic>Tumors</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md Ashraful</creatorcontrib><creatorcontrib>Hanaoka, Shouhei</creatorcontrib><creatorcontrib>Nomura, Yukihiro</creatorcontrib><creatorcontrib>Kikuchi, Tomohiro</creatorcontrib><creatorcontrib>Nakao, Takahiro</creatorcontrib><creatorcontrib>Takenaga, Tomomi</creatorcontrib><creatorcontrib>Hayashi, Naoto</creatorcontrib><creatorcontrib>Yoshikawa, Takeharu</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md Ashraful</au><au>Hanaoka, Shouhei</au><au>Nomura, Yukihiro</au><au>Kikuchi, Tomohiro</au><au>Nakao, Takahiro</au><au>Takenaga, Tomomi</au><au>Hayashi, Naoto</au><au>Yoshikawa, Takeharu</au><au>Abe, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>581</spage><epage>590</epage><pages>581-590</pages><issn>1861-6429</issn><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Standardized uptake values (SUVs) derived from 18 F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV. Methods The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demographic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation formula. We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors and compared them to the ROC curve of normal SUV. Results A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level, triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation. Conclusion The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption by tumors in the liver.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38180621</pmid><doi>10.1007/s11548-023-03044-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2626-0751</orcidid><orcidid>https://orcid.org/0000-0001-7198-1588</orcidid><orcidid>https://orcid.org/0000-0002-4222-4569</orcidid><orcidid>https://orcid.org/0000-0001-9498-7501</orcidid><orcidid>https://orcid.org/0000-0002-7562-477X</orcidid><orcidid>https://orcid.org/0000-0002-7496-1651</orcidid><orcidid>https://orcid.org/0000-0002-1924-5468</orcidid><orcidid>https://orcid.org/0000-0002-1180-2629</orcidid><orcidid>https://orcid.org/0000-0001-6471-9936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-6429
ispartof International journal for computer assisted radiology and surgery, 2024-03, Vol.19 (3), p.581-590
issn 1861-6429
1861-6410
1861-6429
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881646
source SpringerLink Journals - AutoHoldings
subjects Abnormalities
Alanine
Anomalies
Blood
Body size
Cholinesterase
Computed tomography
Computer Imaging
Computer Science
Creatinine
Emission analysis
Fluorine isotopes
Glucose
Health Informatics
Imaging
Liver
Mean
Medicine
Medicine & Public Health
Original
Original Article
Parameter identification
Pattern Recognition and Graphics
Positron emission
Radiology
Standard deviation
Standard scores
Statistical analysis
Surgery
Tomography
Transaminases
Triglycerides
Tumors
Vision
title Improved identification of tumors in 18F-FDG-PET examination by normalizing the standard uptake in the liver based on blood test data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20identification%20of%20tumors%20in%2018F-FDG-PET%20examination%20by%20normalizing%20the%20standard%20uptake%20in%20the%20liver%20based%20on%20blood%20test%20data&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Alam,%20Md%20Ashraful&rft.date=2024-03-01&rft.volume=19&rft.issue=3&rft.spage=581&rft.epage=590&rft.pages=581-590&rft.issn=1861-6429&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-023-03044-4&rft_dat=%3Cproquest_pubme%3E2928956625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929956608&rft_id=info:pmid/38180621&rfr_iscdi=true