HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor
HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This ba...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-02, Vol.626 (8000), p.843-851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 8000 |
container_start_page | 843 |
container_title | Nature (London) |
container_volume | 626 |
creator | Fu, Liran Weiskopf, Erika N. Akkermans, Onno Swanson, Nicholas A. Cheng, Shiya Schwartz, Thomas U. Görlich, Dirk |
description | HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel
1
and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase
2
that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats
3
and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with
trans
-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection. |
doi_str_mv | 10.1038/s41586-023-06966-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931166314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRi1ERS-FP8ACWWLDxmDHr8kKoYo-RKVuWraWY096U3LjYCdU_HsMt5THgpWlmTOfZ3QIeSH4G8ElvC1KaDCMN5Jx0xrD7h6RjVDWMGXAPiYbzhtgHKQ5JE9LueWca2HVE3IooTFWg9yQj2fnn5igwc9liIXitGCmyxbpySmdt74gTT2d1jCiz3ROGQsdh89IPV2yn0qtLDRjwHlJ-Rk56P1Y8Pn9e0SuTz5cHZ-xi8vT8-P3FywoqxcWQmg7b5WWvYkYAW00qJWKvQXsWt-1IQKYqNHy1jbRdta0fWg9jyDAanlE3u1z57XbYQx16exHN-dh5_M3l_zg_u5Mw9bdpK9OcAAhwdSE1_cJOX1ZsSxuN5SA4-gnTGtxTStACy6apqKv_kFv05qnel-lpBDGSKEq1eypkFMpGfuHbQR3P2S5vSxXZbmfstxdHXr55x0PI7_sVEDugVJb0w3m33__J_Y7Jn6gnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931166314</pqid></control><display><type>article</type><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</creator><creatorcontrib>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</creatorcontrib><description>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel
1
and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase
2
that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats
3
and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with
trans
-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06966-w</identifier><identifier>PMID: 38267583</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 631/326/596/1787 ; 631/80/389/2333 ; 82/103 ; 82/81 ; Active Transport, Cell Nucleus ; Capsid - chemistry ; Capsid - metabolism ; Capsid protein ; Capsid Proteins - chemistry ; Capsid Proteins - metabolism ; Capsids ; Cargo containers ; Channel pores ; Cohesion ; DNA probes ; Genomes ; Glycine ; Glycine - metabolism ; HIV ; HIV-1 - chemistry ; HIV-1 - genetics ; HIV-1 - metabolism ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Infections ; multidisciplinary ; Nuclear Pore - chemistry ; Nuclear Pore - metabolism ; Nuclear Pore - virology ; Nuclear Pore Complex Proteins - chemistry ; Nuclear Pore Complex Proteins - metabolism ; Nuclear pores ; Nuclear transport ; Permeability ; Phenylalanine ; Phenylalanine - metabolism ; Proteins ; Receptors ; Science ; Science (multidisciplinary) ; Solubility ; Viral infections ; Virus Internalization</subject><ispartof>Nature (London), 2024-02, Vol.626 (8000), p.843-851</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 22, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</citedby><cites>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</cites><orcidid>0000-0001-6808-6750 ; 0000-0002-8436-2281 ; 0009-0005-2980-5165 ; 0000-0003-2098-9824 ; 0000-0001-8643-8748 ; 0000-0002-4343-5210 ; 0000-0001-8012-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06966-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06966-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38267583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Liran</creatorcontrib><creatorcontrib>Weiskopf, Erika N.</creatorcontrib><creatorcontrib>Akkermans, Onno</creatorcontrib><creatorcontrib>Swanson, Nicholas A.</creatorcontrib><creatorcontrib>Cheng, Shiya</creatorcontrib><creatorcontrib>Schwartz, Thomas U.</creatorcontrib><creatorcontrib>Görlich, Dirk</creatorcontrib><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel
1
and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase
2
that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats
3
and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with
trans
-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</description><subject>14/19</subject><subject>631/326/596/1787</subject><subject>631/80/389/2333</subject><subject>82/103</subject><subject>82/81</subject><subject>Active Transport, Cell Nucleus</subject><subject>Capsid - chemistry</subject><subject>Capsid - metabolism</subject><subject>Capsid protein</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - metabolism</subject><subject>Capsids</subject><subject>Cargo containers</subject><subject>Channel pores</subject><subject>Cohesion</subject><subject>DNA probes</subject><subject>Genomes</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>HIV</subject><subject>HIV-1 - chemistry</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - metabolism</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>multidisciplinary</subject><subject>Nuclear Pore - chemistry</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear Pore - virology</subject><subject>Nuclear Pore Complex Proteins - chemistry</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Nuclear pores</subject><subject>Nuclear transport</subject><subject>Permeability</subject><subject>Phenylalanine</subject><subject>Phenylalanine - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solubility</subject><subject>Viral infections</subject><subject>Virus Internalization</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQRi1ERS-FP8ACWWLDxmDHr8kKoYo-RKVuWraWY096U3LjYCdU_HsMt5THgpWlmTOfZ3QIeSH4G8ElvC1KaDCMN5Jx0xrD7h6RjVDWMGXAPiYbzhtgHKQ5JE9LueWca2HVE3IooTFWg9yQj2fnn5igwc9liIXitGCmyxbpySmdt74gTT2d1jCiz3ROGQsdh89IPV2yn0qtLDRjwHlJ-Rk56P1Y8Pn9e0SuTz5cHZ-xi8vT8-P3FywoqxcWQmg7b5WWvYkYAW00qJWKvQXsWt-1IQKYqNHy1jbRdta0fWg9jyDAanlE3u1z57XbYQx16exHN-dh5_M3l_zg_u5Mw9bdpK9OcAAhwdSE1_cJOX1ZsSxuN5SA4-gnTGtxTStACy6apqKv_kFv05qnel-lpBDGSKEq1eypkFMpGfuHbQR3P2S5vSxXZbmfstxdHXr55x0PI7_sVEDugVJb0w3m33__J_Y7Jn6gnQ</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Fu, Liran</creator><creator>Weiskopf, Erika N.</creator><creator>Akkermans, Onno</creator><creator>Swanson, Nicholas A.</creator><creator>Cheng, Shiya</creator><creator>Schwartz, Thomas U.</creator><creator>Görlich, Dirk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6808-6750</orcidid><orcidid>https://orcid.org/0000-0002-8436-2281</orcidid><orcidid>https://orcid.org/0009-0005-2980-5165</orcidid><orcidid>https://orcid.org/0000-0003-2098-9824</orcidid><orcidid>https://orcid.org/0000-0001-8643-8748</orcidid><orcidid>https://orcid.org/0000-0002-4343-5210</orcidid><orcidid>https://orcid.org/0000-0001-8012-1512</orcidid></search><sort><creationdate>20240222</creationdate><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><author>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/19</topic><topic>631/326/596/1787</topic><topic>631/80/389/2333</topic><topic>82/103</topic><topic>82/81</topic><topic>Active Transport, Cell Nucleus</topic><topic>Capsid - chemistry</topic><topic>Capsid - metabolism</topic><topic>Capsid protein</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - metabolism</topic><topic>Capsids</topic><topic>Cargo containers</topic><topic>Channel pores</topic><topic>Cohesion</topic><topic>DNA probes</topic><topic>Genomes</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>HIV</topic><topic>HIV-1 - chemistry</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - metabolism</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>multidisciplinary</topic><topic>Nuclear Pore - chemistry</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear Pore - virology</topic><topic>Nuclear Pore Complex Proteins - chemistry</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Nuclear pores</topic><topic>Nuclear transport</topic><topic>Permeability</topic><topic>Phenylalanine</topic><topic>Phenylalanine - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solubility</topic><topic>Viral infections</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Liran</creatorcontrib><creatorcontrib>Weiskopf, Erika N.</creatorcontrib><creatorcontrib>Akkermans, Onno</creatorcontrib><creatorcontrib>Swanson, Nicholas A.</creatorcontrib><creatorcontrib>Cheng, Shiya</creatorcontrib><creatorcontrib>Schwartz, Thomas U.</creatorcontrib><creatorcontrib>Görlich, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Liran</au><au>Weiskopf, Erika N.</au><au>Akkermans, Onno</au><au>Swanson, Nicholas A.</au><au>Cheng, Shiya</au><au>Schwartz, Thomas U.</au><au>Görlich, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>626</volume><issue>8000</issue><spage>843</spage><epage>851</epage><pages>843-851</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel
1
and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase
2
that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats
3
and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with
trans
-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38267583</pmid><doi>10.1038/s41586-023-06966-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6808-6750</orcidid><orcidid>https://orcid.org/0000-0002-8436-2281</orcidid><orcidid>https://orcid.org/0009-0005-2980-5165</orcidid><orcidid>https://orcid.org/0000-0003-2098-9824</orcidid><orcidid>https://orcid.org/0000-0001-8643-8748</orcidid><orcidid>https://orcid.org/0000-0002-4343-5210</orcidid><orcidid>https://orcid.org/0000-0001-8012-1512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-02, Vol.626 (8000), p.843-851 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881386 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 14/19 631/326/596/1787 631/80/389/2333 82/103 82/81 Active Transport, Cell Nucleus Capsid - chemistry Capsid - metabolism Capsid protein Capsid Proteins - chemistry Capsid Proteins - metabolism Capsids Cargo containers Channel pores Cohesion DNA probes Genomes Glycine Glycine - metabolism HIV HIV-1 - chemistry HIV-1 - genetics HIV-1 - metabolism Human immunodeficiency virus Humanities and Social Sciences Humans Infections multidisciplinary Nuclear Pore - chemistry Nuclear Pore - metabolism Nuclear Pore - virology Nuclear Pore Complex Proteins - chemistry Nuclear Pore Complex Proteins - metabolism Nuclear pores Nuclear transport Permeability Phenylalanine Phenylalanine - metabolism Proteins Receptors Science Science (multidisciplinary) Solubility Viral infections Virus Internalization |
title | HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV-1%20capsids%20enter%20the%20FG%20phase%20of%20nuclear%20pores%20like%20a%20transport%20receptor&rft.jtitle=Nature%20(London)&rft.au=Fu,%20Liran&rft.date=2024-02-22&rft.volume=626&rft.issue=8000&rft.spage=843&rft.epage=851&rft.pages=843-851&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06966-w&rft_dat=%3Cproquest_pubme%3E2931166314%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931166314&rft_id=info:pmid/38267583&rfr_iscdi=true |