HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor

HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-02, Vol.626 (8000), p.843-851
Hauptverfasser: Fu, Liran, Weiskopf, Erika N., Akkermans, Onno, Swanson, Nicholas A., Cheng, Shiya, Schwartz, Thomas U., Görlich, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 8000
container_start_page 843
container_title Nature (London)
container_volume 626
creator Fu, Liran
Weiskopf, Erika N.
Akkermans, Onno
Swanson, Nicholas A.
Cheng, Shiya
Schwartz, Thomas U.
Görlich, Dirk
description HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.
doi_str_mv 10.1038/s41586-023-06966-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931166314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRi1ERS-FP8ACWWLDxmDHr8kKoYo-RKVuWraWY096U3LjYCdU_HsMt5THgpWlmTOfZ3QIeSH4G8ElvC1KaDCMN5Jx0xrD7h6RjVDWMGXAPiYbzhtgHKQ5JE9LueWca2HVE3IooTFWg9yQj2fnn5igwc9liIXitGCmyxbpySmdt74gTT2d1jCiz3ROGQsdh89IPV2yn0qtLDRjwHlJ-Rk56P1Y8Pn9e0SuTz5cHZ-xi8vT8-P3FywoqxcWQmg7b5WWvYkYAW00qJWKvQXsWt-1IQKYqNHy1jbRdta0fWg9jyDAanlE3u1z57XbYQx16exHN-dh5_M3l_zg_u5Mw9bdpK9OcAAhwdSE1_cJOX1ZsSxuN5SA4-gnTGtxTStACy6apqKv_kFv05qnel-lpBDGSKEq1eypkFMpGfuHbQR3P2S5vSxXZbmfstxdHXr55x0PI7_sVEDugVJb0w3m33__J_Y7Jn6gnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931166314</pqid></control><display><type>article</type><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</creator><creatorcontrib>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</creatorcontrib><description>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06966-w</identifier><identifier>PMID: 38267583</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 631/326/596/1787 ; 631/80/389/2333 ; 82/103 ; 82/81 ; Active Transport, Cell Nucleus ; Capsid - chemistry ; Capsid - metabolism ; Capsid protein ; Capsid Proteins - chemistry ; Capsid Proteins - metabolism ; Capsids ; Cargo containers ; Channel pores ; Cohesion ; DNA probes ; Genomes ; Glycine ; Glycine - metabolism ; HIV ; HIV-1 - chemistry ; HIV-1 - genetics ; HIV-1 - metabolism ; Human immunodeficiency virus ; Humanities and Social Sciences ; Humans ; Infections ; multidisciplinary ; Nuclear Pore - chemistry ; Nuclear Pore - metabolism ; Nuclear Pore - virology ; Nuclear Pore Complex Proteins - chemistry ; Nuclear Pore Complex Proteins - metabolism ; Nuclear pores ; Nuclear transport ; Permeability ; Phenylalanine ; Phenylalanine - metabolism ; Proteins ; Receptors ; Science ; Science (multidisciplinary) ; Solubility ; Viral infections ; Virus Internalization</subject><ispartof>Nature (London), 2024-02, Vol.626 (8000), p.843-851</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 22, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</citedby><cites>FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</cites><orcidid>0000-0001-6808-6750 ; 0000-0002-8436-2281 ; 0009-0005-2980-5165 ; 0000-0003-2098-9824 ; 0000-0001-8643-8748 ; 0000-0002-4343-5210 ; 0000-0001-8012-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06966-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06966-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38267583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Liran</creatorcontrib><creatorcontrib>Weiskopf, Erika N.</creatorcontrib><creatorcontrib>Akkermans, Onno</creatorcontrib><creatorcontrib>Swanson, Nicholas A.</creatorcontrib><creatorcontrib>Cheng, Shiya</creatorcontrib><creatorcontrib>Schwartz, Thomas U.</creatorcontrib><creatorcontrib>Görlich, Dirk</creatorcontrib><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</description><subject>14/19</subject><subject>631/326/596/1787</subject><subject>631/80/389/2333</subject><subject>82/103</subject><subject>82/81</subject><subject>Active Transport, Cell Nucleus</subject><subject>Capsid - chemistry</subject><subject>Capsid - metabolism</subject><subject>Capsid protein</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - metabolism</subject><subject>Capsids</subject><subject>Cargo containers</subject><subject>Channel pores</subject><subject>Cohesion</subject><subject>DNA probes</subject><subject>Genomes</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>HIV</subject><subject>HIV-1 - chemistry</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - metabolism</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>multidisciplinary</subject><subject>Nuclear Pore - chemistry</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear Pore - virology</subject><subject>Nuclear Pore Complex Proteins - chemistry</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Nuclear pores</subject><subject>Nuclear transport</subject><subject>Permeability</subject><subject>Phenylalanine</subject><subject>Phenylalanine - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solubility</subject><subject>Viral infections</subject><subject>Virus Internalization</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQRi1ERS-FP8ACWWLDxmDHr8kKoYo-RKVuWraWY096U3LjYCdU_HsMt5THgpWlmTOfZ3QIeSH4G8ElvC1KaDCMN5Jx0xrD7h6RjVDWMGXAPiYbzhtgHKQ5JE9LueWca2HVE3IooTFWg9yQj2fnn5igwc9liIXitGCmyxbpySmdt74gTT2d1jCiz3ROGQsdh89IPV2yn0qtLDRjwHlJ-Rk56P1Y8Pn9e0SuTz5cHZ-xi8vT8-P3FywoqxcWQmg7b5WWvYkYAW00qJWKvQXsWt-1IQKYqNHy1jbRdta0fWg9jyDAanlE3u1z57XbYQx16exHN-dh5_M3l_zg_u5Mw9bdpK9OcAAhwdSE1_cJOX1ZsSxuN5SA4-gnTGtxTStACy6apqKv_kFv05qnel-lpBDGSKEq1eypkFMpGfuHbQR3P2S5vSxXZbmfstxdHXr55x0PI7_sVEDugVJb0w3m33__J_Y7Jn6gnQ</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Fu, Liran</creator><creator>Weiskopf, Erika N.</creator><creator>Akkermans, Onno</creator><creator>Swanson, Nicholas A.</creator><creator>Cheng, Shiya</creator><creator>Schwartz, Thomas U.</creator><creator>Görlich, Dirk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6808-6750</orcidid><orcidid>https://orcid.org/0000-0002-8436-2281</orcidid><orcidid>https://orcid.org/0009-0005-2980-5165</orcidid><orcidid>https://orcid.org/0000-0003-2098-9824</orcidid><orcidid>https://orcid.org/0000-0001-8643-8748</orcidid><orcidid>https://orcid.org/0000-0002-4343-5210</orcidid><orcidid>https://orcid.org/0000-0001-8012-1512</orcidid></search><sort><creationdate>20240222</creationdate><title>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</title><author>Fu, Liran ; Weiskopf, Erika N. ; Akkermans, Onno ; Swanson, Nicholas A. ; Cheng, Shiya ; Schwartz, Thomas U. ; Görlich, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ccc9ba7453f6ded8e7d6e544df78eb9ab9cd886d5e70972d7b769fc9a0d818753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/19</topic><topic>631/326/596/1787</topic><topic>631/80/389/2333</topic><topic>82/103</topic><topic>82/81</topic><topic>Active Transport, Cell Nucleus</topic><topic>Capsid - chemistry</topic><topic>Capsid - metabolism</topic><topic>Capsid protein</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - metabolism</topic><topic>Capsids</topic><topic>Cargo containers</topic><topic>Channel pores</topic><topic>Cohesion</topic><topic>DNA probes</topic><topic>Genomes</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>HIV</topic><topic>HIV-1 - chemistry</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - metabolism</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>multidisciplinary</topic><topic>Nuclear Pore - chemistry</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear Pore - virology</topic><topic>Nuclear Pore Complex Proteins - chemistry</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Nuclear pores</topic><topic>Nuclear transport</topic><topic>Permeability</topic><topic>Phenylalanine</topic><topic>Phenylalanine - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solubility</topic><topic>Viral infections</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Liran</creatorcontrib><creatorcontrib>Weiskopf, Erika N.</creatorcontrib><creatorcontrib>Akkermans, Onno</creatorcontrib><creatorcontrib>Swanson, Nicholas A.</creatorcontrib><creatorcontrib>Cheng, Shiya</creatorcontrib><creatorcontrib>Schwartz, Thomas U.</creatorcontrib><creatorcontrib>Görlich, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Liran</au><au>Weiskopf, Erika N.</au><au>Akkermans, Onno</au><au>Swanson, Nicholas A.</au><au>Cheng, Shiya</au><au>Schwartz, Thomas U.</au><au>Görlich, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>626</volume><issue>8000</issue><spage>843</spage><epage>851</epage><pages>843-851</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38267583</pmid><doi>10.1038/s41586-023-06966-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6808-6750</orcidid><orcidid>https://orcid.org/0000-0002-8436-2281</orcidid><orcidid>https://orcid.org/0009-0005-2980-5165</orcidid><orcidid>https://orcid.org/0000-0003-2098-9824</orcidid><orcidid>https://orcid.org/0000-0001-8643-8748</orcidid><orcidid>https://orcid.org/0000-0002-4343-5210</orcidid><orcidid>https://orcid.org/0000-0001-8012-1512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (8000), p.843-851
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881386
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 14/19
631/326/596/1787
631/80/389/2333
82/103
82/81
Active Transport, Cell Nucleus
Capsid - chemistry
Capsid - metabolism
Capsid protein
Capsid Proteins - chemistry
Capsid Proteins - metabolism
Capsids
Cargo containers
Channel pores
Cohesion
DNA probes
Genomes
Glycine
Glycine - metabolism
HIV
HIV-1 - chemistry
HIV-1 - genetics
HIV-1 - metabolism
Human immunodeficiency virus
Humanities and Social Sciences
Humans
Infections
multidisciplinary
Nuclear Pore - chemistry
Nuclear Pore - metabolism
Nuclear Pore - virology
Nuclear Pore Complex Proteins - chemistry
Nuclear Pore Complex Proteins - metabolism
Nuclear pores
Nuclear transport
Permeability
Phenylalanine
Phenylalanine - metabolism
Proteins
Receptors
Science
Science (multidisciplinary)
Solubility
Viral infections
Virus Internalization
title HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV-1%20capsids%20enter%20the%20FG%20phase%20of%20nuclear%20pores%20like%20a%20transport%20receptor&rft.jtitle=Nature%20(London)&rft.au=Fu,%20Liran&rft.date=2024-02-22&rft.volume=626&rft.issue=8000&rft.spage=843&rft.epage=851&rft.pages=843-851&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06966-w&rft_dat=%3Cproquest_pubme%3E2931166314%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931166314&rft_id=info:pmid/38267583&rfr_iscdi=true